中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (27): 4397-4404.doi: 10.12307/2024.546
• 组织构建综述 tissue construction review • 上一篇 下一篇
郭 辉,孔健达,田春兰
收稿日期:
2023-10-07
接受日期:
2023-11-06
出版日期:
2024-09-28
发布日期:
2024-01-29
通讯作者:
田春兰,硕士,教授,硕士生导师,曲阜师范大学体育科学学院,山东省济宁市 272000
作者简介:
郭辉,男,1997年生,山东省人,汉族,曲阜师范大学体育科学学院在读硕士,主要从事运动训练及其生理生化机制研究。
基金资助:
Guo Hui, Kong Jianda, Tian Chunlan
Received:
2023-10-07
Accepted:
2023-11-06
Online:
2024-09-28
Published:
2024-01-29
Contact:
Tian Chunlan, Master, Professor, Master’s supervisor, School of Sports Science, Qufu Normal University, Jining 272000, Shandong Province, China
About author:
Guo Hui, Master candidate, School of Sports Science, Qufu Normal University, Jining 272000, Shandong Province, China
Supported by:
摘要:
文题释义:
线粒体自噬:是一种特殊形式的自噬过程,指的是细胞通过将旧或损坏的线粒体包裹在自噬泡中,然后将其降解和回收的过程。
背景:肌少症是一种衰老相关的退行性综合征,线粒体自噬和运动防治肌少症已被证明密切相关,但尚缺乏详细介绍其中具体的受体蛋白和信号通路在运动防治肌少症中作用的综述。
目的:综述详细介绍线粒体自噬相关具体的受体蛋白和信号通路在运动防治肌少症中的作用。结果与结论:①肌少症是随着年龄增长肌肉质量和功能下降的疾病,其发生机制涉及神经肌肉功能下降、慢性炎症、酸碱失衡和线粒体功能障碍等。②线粒体自噬是细胞清除受损线粒体的重要过程,其中相关受体蛋白以及信号通路参与线粒体自噬的调控,运动可以通过调节这些受体蛋白和信号通路的活性,促进线粒体自噬的发生,对防治肌少症具有重要作用。③运动通过调控多个通路来促进线粒体自噬,包括上调AMPK、磷酸化ULK1、降低线粒体能量、增加与AMBRA1相关蛋白的表达、调控PINK1/Parkin通路等,从而改善肌少症引发的线粒体功能障碍;此外,运动还能激活mTOR通路促进肌肉生长和增加对葡萄糖的摄取,预防和治疗肌少症。④未来需要进一步深入研究运动防治肌少症中线粒体自噬相关受体蛋白和信号通路的具体作用机制和调控途径,开展更多的人体临床研究,以推动该领域的进一步发展。
https://orcid.org/0009-0008-4769-443X(郭辉);https://orcid.org/0009-0000-1899-0194(田春兰)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
郭 辉, 孔健达, 田春兰. 线粒体自噬相关受体蛋白和信号通路在运动防治肌少症中的作用[J]. 中国组织工程研究, 2024, 28(27): 4397-4404.
Guo Hui, Kong Jianda, Tian Chunlan. The role of mitochondrial autophagy-related receptor proteins and signaling pathways in the prevention and treatment of sarcopenia through exercise[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(27): 4397-4404.
[1] CRUZ-JENTOFT AJ, SAYER AA. Sarcopenia. Lancet. 2019;393(10191):2636-2646. [2] CRUZ-JENTOFT AJ, BAHAT G, BAUER J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(4):601. [3] PETERMANN-ROCHA F, BALNTZI V, GRAY SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):86-99. [4] CHEN LK, WOO J, ASSANTACHAI P, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020; 21(3):300-307.e2. [5] LARSSON L, DEGENS H, LI M, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99(1):427-511. [6] BIOLO G, CEDERHOLM T, MUSCARITOLI M. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia. Clin Nutr. 2014;33(5):737-748. [7] URBINA-VARELA R, CASTILLO N, VIDELA LA, et al. Impact of mitophagy and mitochondrial unfolded protein response as new adaptive mechanisms underlying old pathologies: sarcopenia and non-alcoholic fatty liver disease. Int J Mol Sci. 2020; 21(20):7704. [8] WANG L, LU G, SHEN HM. The long and the short of PTEN in the regulation of mitophagy. Front Cell Dev Biol. 2020;8:299. [9] KO YJ, KO IG. Voluntary wheel running exercise improves aging-induced sarcopenia via activation of peroxisome proliferator-activated receptor gamma coactivator-1α/fibronectin type iii domain-containing protein 5/adenosine monophosphate-activated protein kinase signaling pathway. Int Neurourol J. 2021;25(Suppl 1):S27-S34. [10] 侯国珍,郭琪,韩佩佩.肌少症自噬激活和线粒体质量控制信号途径的研究进展[J].中国医学科学院学报,2022,44(4):709-716. [11] 王岑依,梁计陵,司誉豪等.运动通过调控线粒体质量控制改善肌少症的研究进展[J].中国康复理论与实践,2020,26(9):1066-1070. [12] ZHU Y, ZHOU X, ZHU A, et al. Advances in exercise to alleviate sarcopenia in older adults by improving mitochondrial dysfunction. Front Physiol. 2023;14:1196426. [13] BELLANTI F, LO BUGLIO A, VENDEMIALE G. Mitochondrial impairment in sarcopenia. Biology (Basel). 2021;10(1):31. [14] DEMONTIS F, PICCIRILLO R, GOLDBERG AL, et al. Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis Model Mech. 2013;6(6):1339-1352. [15] GAO J, YU L, WANG Z, et al. Induction of mitophagy in C2C12 cells by electrical pulse stimulation involves increasing the level of the mitochondrial receptor FUNDC1 through the AMPK-ULK1 pathway. Am J Transl Res. 2020;12(10):6879-6894. [16] LAMPERT MA, OROGO AM, NAJOR RH, et al. BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation. Autophagy. 2019;15(7):1182-1198. [17] LAKER RC, DRAKE JC, WILSON RJ, et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun. 2017;8(1):548. [18] FU T, XU Z, LIU L, et al. Mitophagy directs muscle-adipose crosstalk to alleviate dietary obesity. Cell Rep. 2018;23(5):1357-1372. [19] TRIOLO M, HOOD DA. Manifestations of age on autophagy, mitophagy and lysosomes in skeletal muscle. Cells. 2021;10(5):1054. [20] 于亮,史霄雨,刘子铭等.运动时长和强度对大鼠骨骼肌线粒体自噬的影响及其机制[J].生理学报,2020,72(5):631-642. [21] LI X, LYU Y, LI J, WANG X. AMBRA1 and its role as a target for anticancer therapy. Front Oncol. 2022;12:946086. [22] SUN WL, HE LY, LIANG L, et al. Ambra1 regulates apoptosis and chemosensitivity in breast cancer cells through the Akt-FoxO1-Bim pathway. Apoptosis. 2022;27(5-6):329-341. [23] XU HD, QIN ZH. Beclin 1, Bcl-2 and Autophagy. Adv Exp Med Biol. 2019;1206:109-126. [24] DI RIENZO M, ROMAGNOLI A, CICCOSANTI F, et al. AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability. Autophagy. 2022;18(8):1752-1762. [25] LI W, HE P, HUANG Y, et al. Selective autophagy of intracellular organelles: recent research advances. Theranostics. 2021;11(1):222-256. [26] IORIO R, CELENZA G, PETRICCA S. Mitophagy: molecular mechanisms, new concepts on parkin activation and the emerging role of AMPK/ULK1 axis. Cells. 2021;11(1):30. [27] GAMBAROTTO L, METTI S, CHRISAM M, et al. Ambra1 deficiency impairs mitophagy in skeletal muscle. J Cachexia Sarcopenia Muscle. 2022;13(4):2211-2224. [28] LENHARE L, CRISOL BM, SILVA VRR, et al. Physical exercise increases Sestrin 2 protein levels and induces autophagy in the skeletal muscle of old mice. Exp Gerontol. 2017; 97:17-21. [29] KIM YA, KIM YS, OH SL, et al. Autophagic response to exercise training in skeletal muscle with age. J Physiol Biochem. 2013;69(4):697-705. [30] SANTOS-ALVES E, MARQUES-ALEIXO I, RIZO-ROCA D, et al. Exercise modulates liver cellular and mitochondrial proteins related to quality control signaling. Life Sci. 2015; 135:124-130. [31] STRAPPAZZON F, DI RITA A, PESCHIAROLI A, et al. HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy. Cell Death Differ. 2020;27(4):1155-1168. [32] YAN C, GONG L, CHEN L, et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 2020;16(3):419-434. [33] WANG K, QI Y, WANG X, et al. GOLPH3 promotes glioma progression by enhancing PHB2-mediated autophagy. Am J Cancer Res. 2021;11(5):2106-2123. [34] BLOTTNER D, CAPITANIO D, TRAUTMANN G, et al. Nitrosative redox homeostasis and antioxidant response defense in disused vastus lateralis muscle in long-term bedrest (toulouse cocktail study). Antioxidants (Basel). 2021;10(3):378. [35] HERNANDO-RODRÍGUEZ B, ARTAL-SANZ M. Mitochondrial quality control mechanisms and the PHB (prohibitin) complex. Cells. 2018;7(12):238. [36] 齐洁,牛书妍,李纯,等.运动对高脂膳食诱导的IR小鼠骨骼肌线粒体内膜蛋白PHB2表达和线粒体自噬的影响[J].北京体育大学学报,2022,45(7):104-112. [37] FAN Y, MURGIA M, LINDER MI, et al. HAX1-dependent control of mitochondrial proteostasis governs neutrophil granulocyte differentiation. J Clin Invest. 2022;132(9): e153153. [38] LÓPEZ-LLUCH G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech Ageing Dev. 2017;162:108-121. [39] SIGNORILE A, SGARAMELLA G, BELLOMO F, et al. Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells. 2019;8(1):71. [40] 方雯,李泽,刘晓华,等.一次性力竭运动对大鼠骨骼肌线粒体自噬的影响[J].中国应用生理学杂志,2017,33(6):544-549. [41] GU Q, WANG B, ZHANG XF, MA YP, et al. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats. Exp Gerontol. 2014;56:37-44. [42] LIU D, FAN YB, TAO XH, et al. Mitochondrial quality control in sarcopenia: updated overview of mechanisms and interventions. Aging Dis. 2021;12(8):2016-2030. [43] 王香香,凌江红,王煜姣,等.Pink1/Parkin信号通路调控线粒体自噬的研究进展[J].基因组学与应用生物学,2022,41(4):919-926. [44] 陈林波,马凯丽,陈佺,等.线粒体自噬的分子机制[J].中国科学:生命科学, 2019,49(9):1045-1053. [45] GAOUSPILLOU G, GODIN R, PIQUEREAU J, et al. Protective role of Parkin in skeletal muscle contractile and mitochondrial function. J Physiol. 2018;596(13):2565-2579. [46] ZHONG J, LI M, XU J, et al. Roflupram attenuates α-synuclein-induced cytotoxicity and promotes the mitochondrial translocation of Parkin in SH-SY5Y cells overexpressing A53T mutant α-synuclein. Toxicol Appl Pharmacol. 2022;436:115859. [47] DULAC M, LEDUC-GAUDET JP, REYNAUD O, et al. Drp1 knockdown induces severe muscle atrophy and remodelling, mitochondrial dysfunction, autophagy impairment and denervation. J Physiol. 2020;598(17):3691-3710. [48] DRAKE JC, WILSON RJ, YAN Z. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. FASEB J. 2016;30(1):13-22. [49] ROMANELLO V. The interplay between mitochondrial morphology and myomitokines in aging sarcopenia. Int J Mol Sci. 2020;22(1):91. [50] ZHAO N, ZHANG X, LI B, et al. Treadmill exercise improves PINK1/Parkin-mediated mitophagy activity against Alzheimer’s disease pathologies by upregulated SIRT1-FOXO1/3 Axis in APP/PS1 mice. Mol Neurobiol. 2023;60(1):277-291. [51] ZENG Z, LIANG J, WU L, et al. Exercise-induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control. Front Physiol. 2020;11:583478. [52] LIANG J, ZHANG H, ZENG Z, et al. Lifelong aerobic exercise alleviates sarcopenia by activating autophagy and inhibiting protein degradation via the AMPK/PGC-1α signaling pathway. Metabolites. 2021;11(5):323. [53] LIU S, YU C, XIE L, et al. Aerobic exercise improves mitochondrial function in sarcopenia mice through sestrin2 in an AMPKα2-dependent manner. J Gerontol A Biol Sci Med Sci. 2021;76(7):1161-1168. [54] WANG Z, XIA T, JIN S, et al. Chronic restraint stress-induced muscle atrophy leads to fatigue in mice by inhibiting the AMPK signaling pathway. Biomedicines. 2021;9(10):1321. [55] SCARPULLA RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2011;1813(7):1269-1278. [56] HARDIE DG. AMPK--sensing energy while talking to other signaling pathways. Cell Metab. 2014;20(6):939-952. [57] 冯丽丽,李博文,田振军.运动激活SESN2/AMPK/PGC-1α通路改善心梗诱导的骨骼肌减少[J].北京体育大学学报,2021,44(5):128-137. [58] LIAO ZY, CHEN JL, XIAO MH, et al. The effect of exercise, resveratrol or their combination on Sarcopenia in aged rats via regulation of AMPK/Sirt1 pathway. Exp Gerontol. 2017;98: 177-183. [59] MEMME JM, HOOD DA. Molecular basis for the therapeutic effects of exercise on mitochondrial defects. Front Physiol. 2021;11:615038. [60] ALIZADEH PAHLAVANI H. Exercise therapy for people with sarcopenic obesity: myokines and adipokines as effective actors. Front Endocrinol (Lausanne). 2022;13:811751. [61] ESTEBAN-MARTÍNEZ L, BOYA P. BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming. Autophagy. 2018;14(5):915-917. [62] NEY PA. Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochim Biophys Acta. 2015;1853(10 Pt B):2775-2783. [63] AVERSA Z, PIN F, LUCIA S, et al. Autophagy is induced in the skeletal muscle of cachectic cancer patients. Sci Rep. 2016;6:30340. [64] 赵永才,黄涛.运动训练及饮食限制对小鼠骨骼肌线粒体内膜蛋白PHB2表达和线粒体自噬的影响[J].北京体育大学学报,2019,35(4):363-365. [65] OGURA Y, IEMITSU M, NAITO H, et al. Single bout of running exercise changes LC3-II expression in rat cardiac muscle. Biochem Biophys Res Commun. 2011;414(4):756-760. [66] SPRINGER MZ, MACLEOD KF. In brief: mitophagy: mechanisms and role in human disease. J Pathol. 2016;240(3):253-255. [67] BALAN E, SCHWALM C, NASLAIN D, et al. Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age. Front Physiol. 2019;10:1088. [68] JU JS, JEON SI, PARK JY, et al. Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition. J Physiol Sci. 2016;66(5):417-430. [69] VAINSHTAIN A, SANDRI M. Signaling pathways that control muscle mass. Int J Mol Sci. 2020;21(13):4759. [70] PETERSEN KF, MORINO K, ALVES TC, et al. Effect of aging on muscle mitochondrial substrate utilization in humans [published correction appears in Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):E5762]. Proc Natl Acad Sci U S A. 2015;112(36):11330-11334. [71] ANAND A, NAMBIRAJAN A, KUMAR V, et al. Alterations in autophagy and mammalian target of rapamycin (mTOR) pathways mediate sarcopenia in patients with cirrhosis. J Clin Exp Hepatol. 2022;12(2):510-518. [72] PARK SS, SEO YK, KWON KS. Sarcopenia targeting with autophagy mechanism by exercise. BMB Rep. 2019;52(1):64-69. [73] FRY CS, DRUMMOND MJ, GLYNN EL, et al. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle. 2011;1(1):11. [74] PASINI E, LE DOUAIRON LAHAYE S, FLATI V, et al. Effects of treadmill exercise and training frequency on anabolic signaling pathways in the skeletal muscle of aged rats. Exp Gerontol. 2012;47(1):23-28. [75] 张杰.跑台和抗阻运动对骨骼肌葡萄糖摄取和mTOR信号通路的影响[J].基因组学与应用生物学,2020,39(9):4263-4269. [76] 赵瑞朋.运动对骨骼肌葡萄糖摄取和蛋白质合成信号通路的影响[J].基因组学与应用生物学,2020,39(9):4283-4288. |
[1] | 吴 菁, 姚英策, 杨晓巍, 薛博士, 赵建斌, 杨 辰, 栾天峰, 周志鹏. 肌力训练与神经肌肉电刺激干预髌股关节痛患者下肢功能和生物力学的变化[J]. 中国组织工程研究, 2024, 28(9): 1365-1371. |
[2] | 杨毅峰, 叶 楠, 王 琳, 郭帅成, 黄 健. 右美托咪定抗缺血再灌注损伤的信号通路[J]. 中国组织工程研究, 2024, 28(9): 1464-1469. |
[3] | 魏 娟, 李 婷, 郇梦婷, 谢 颖, 谢舟煜, 韦庆波, 吴云川. 静力性训练改善2型糖尿病骨骼肌胰岛素抵抗的机制[J]. 中国组织工程研究, 2024, 28(8): 1271-1276. |
[4] | 娄 国, 张 艳, 付常喜. 内皮型一氧化氮合酶在运动预适应改善心肌缺血-再灌注损伤中的作用[J]. 中国组织工程研究, 2024, 28(8): 1283-1288. |
[5] | 岳 云, 王佩佩, 袁兆鹤, 何生存, 贾戌生, 刘 倩, 李占涛, 付慧玲, 宋 斐, 贾孟辉. 巴豆霜干预脑缺血再灌注损伤大鼠皮质区JNK/p38 MAPK及神经元凋亡的机制[J]. 中国组织工程研究, 2024, 28(8): 1186-1192. |
[6] | 王 继, 张 敏, 李文博, 杨中亚, 张 龙. 有氧运动对2型糖尿病大鼠糖脂代谢、骨骼肌炎症和自噬的影响[J]. 中国组织工程研究, 2024, 28(8): 1200-1205. |
[7] | 刘 鑫, 胡 满, 赵文杰, 张 钰, 孟 博, 杨 盛, 彭 晴, 张 亮, 王静成. 镉暴露激活PI3K/Akt信号通路诱导椎间盘纤维环细胞衰老[J]. 中国组织工程研究, 2024, 28(8): 1217-1222. |
[8] | 周邦瑜, 李 杰, 阮玉山, 耿福能, 李绍波. 美洲大蠊研粉干预脊髓半横断大鼠运动功能和自噬蛋白Beclin-1的表达[J]. 中国组织工程研究, 2024, 28(8): 1223-1228. |
[9] | 阮 蓉, 娄旭佳, 金其贯, 章立冰, 徐 尚, 胡玉龙. 白藜芦醇可调控运动性疲劳大鼠的糖异生[J]. 中国组织工程研究, 2024, 28(8): 1229-1234. |
[10] | 潘小龙, 樊飞燕, 应春苗, 刘飞祥, 张运克. 中药抑制间充质干细胞衰老的作用及机制[J]. 中国组织工程研究, 2024, 28(7): 1091-1098. |
[11] | 孔健达, 穆玉晶, 朱 磊, 李志林, 陈世娟. 骨骼肌再生过程中卫星细胞调控机制及其生态位信号的作用[J]. 中国组织工程研究, 2024, 28(7): 1105-1111. |
[12] | 刘麒薇, 张俊辉, 杨 袁, 王金娟. 脐带间充质干细胞治疗多囊卵巢综合征的作用及机制[J]. 中国组织工程研究, 2024, 28(7): 1015-1020. |
[13] | 杨毅峰, 黄 健, 叶 楠, 王 琳. 全膝关节置换中的缺血再灌注损伤[J]. 中国组织工程研究, 2024, 28(6): 955-960. |
[14] | 张克凡, 石 辉. 细胞因子治疗骨关节炎的研究现状及应用前景[J]. 中国组织工程研究, 2024, 28(6): 961-967. |
[15] | 刘志杨, 傅泽铤, 夏 雨, 丁海丽. 运动性骨骼肌损伤中时钟基因BMAL1与MyoD的作用[J]. 中国组织工程研究, 2024, 28(4): 510-515. |
1.1.3 检索数据库 Web of Science、PubMed、中国知网、万方和维普数据库。
1.1.4 检索词 中文检索词:“肌少症,肌少症,衰老,老年,线粒体,线粒体功能,蛋白,通路”等;英文检索词:“Sarcopenia,Muscle wasting,Aging,Elderly,Mitochondrial dysfunction,impaired mitochondrial function,Mitochondrial autophagy,Mitophagy,Receptor proteins”等。
1.1.5 检索策略 运用布尔逻辑运算符“OR”和“AND”分别将检索词连接进行检索。以PubMed和中国知网数据库为例,文献检索的详细策略见图1。
1.1.6 检索文献量 初步检索获得文献4 517篇,中文文献2 170篇,英文文献2 347篇。
1.3 文献质量评价和数据的提取 文章在数据库初步共检索到文献4 517篇,严格按照纳入和排除标准进行筛选,最终纳入文献76篇。文献筛选流程图见图2。
#br#
文题释义:
线粒体自噬:是一种特殊形式的自噬过程,指的是细胞通过将旧或损坏的线粒体包裹在自噬泡中,然后将其降解和回收的过程。近年来,研究人员对肌少症的防治进行了广泛的研究,发现运动是一种防治肌少症的有效解决策略,而线粒体自噬作为一种重要的细胞清除机制在其中发挥了重要作用。线粒体自噬是一种特殊形式的自噬,是细胞通过选择性地降解和清除受损或老化的线粒体来维持细胞内线粒体的质量和功能。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||