中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (17): 2702-2707.doi: 10.12307/2024.474

• 组织工程骨材料 tissue-engineered bone • 上一篇    下一篇

低温冷凝沉积法3D打印骨组织工程左旋聚乳酸/珍珠粉复合支架

刚芳莉1,石  瑞1,马春阳2,肖  一1   

  1. 1忻州师范学院生物系,山西省忻州市  034000;2北京航空航天大学生物与医学工程学院,北京市  100083
  • 收稿日期:2023-07-21 接受日期:2023-09-02 出版日期:2024-06-18 发布日期:2023-12-15
  • 通讯作者: 刚芳莉,博士,讲师,忻州师范学院生物系,山西省忻州市 034000
  • 作者简介:刚芳莉,女,1990年生,甘肃省陇南市人,汉族,博士,讲师,主要从事生物医用材料方面的研究。
  • 基金资助:
    山西省基础研究计划青年科学研究项目(20210302124286),项目负责人:刚芳莉;清华大学先进材料教育部重点实验室开放课题(ADV21-16),项目负责人:刚芳莉;忻州市科技计划应用基础研究计划(20220505),项目负责人:石瑞

Low-temperature condensation deposition method for 3D printing of bone tissue engineering poly-L-lactic acid/pearl powder composite scaffold

Gang Fangli1, Shi Rui1, Ma Chunyang2, Xiao Yi1   

  1. 1Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi Province, China; 2School of Biological and Medical Engineering, Beihang University, Beijing 100083, China
  • Received:2023-07-21 Accepted:2023-09-02 Online:2024-06-18 Published:2023-12-15
  • Contact: Gang Fangli, PhD, Lecturer, Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi Province, China
  • About author:Gang Fangli, PhD, Lecturer, Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi Province, China
  • Supported by:
    Shanxi Applied Basic Research Project for Youth Science Research, No. 20210302124286 (to GFL); Fund of Key Laboratory of Advanced Materials of Ministry of Education, No. ADV21-16 (to GFL); Xinzhou Basic Science and Technology Research Project, No. 20220505 (to SR)

摘要:


文题释义:

低温冷凝沉积法:在3D打印过程中,将材料溶于特定溶剂中制成墨水,接收台温度降低到墨水凝固点以下,墨水从喷嘴中挤出,在接收台上逐层沉积并在短时间内冷凝成型。然后通过其他途径(如冷冻干燥)将墨水中的溶剂除去,使其能够在常温环境中固定成型并最终形成所需支架而建立起来的一种方法。
左旋聚乳酸/珍珠粉复合支架:组织工程是一门以细胞生物学和材料科学相结合,进行体外或体内构建组织或器官的新兴学科。支架作为组织工程三要素之一能满足细胞贴附、成长以及分化需求并最终形成新生组织。左旋聚乳酸凭借其优异的力学性能和生物相容性被广泛用作支架基体材料。在基体材料中复合功能颗粒(如珍珠粉等)可制备具有特定功能(如促进成骨分化)的复合支架用于组织修复。


背景:大面积骨缺损的修复目前仍面临严峻挑战,研发可个性化定制、低成本且具有成骨诱导活性的组织工程支架用于骨修复意义深远。

目的:探索低温冷凝沉积法实现3D打印含珍珠复合材料骨组织工程支架的工艺流程,并进一步测试该复合支架的理化性能和体外生物学功能。
方法:采用研磨过筛法制备珍珠粉,将不同质量的珍珠粉加入左旋聚乳酸墨水中,使珍珠粉与左旋聚乳酸的质量比分别为0,0.1,0.2,0.3,0.5,采用低温冷凝沉积法3D打印左旋聚乳酸/珍珠粉复合支架。检测支架的微观形貌、抗压性能、水接触角、细胞相容性以及体外促成骨分化能力。

结果与结论:①扫描电镜显示5组支架均有直径2 μm甚至更小的微孔,形状不规则且相互连通;②5组支架均具有良好的抗压性能,其中珍珠粉0.5组支架的压缩强度高于其他4组支架(P < 0.05),珍珠粉0.2组、珍珠粉0.5组的水接触角小于珍珠粉0组(P < 0.01,P < 0.001);③将骨髓间充质干细胞分别与5组支架共培养1,3,5 d,珍珠粉0.1组、珍珠粉0.2组、珍珠粉0.3组、珍珠粉0.5组培养3,5 d的细胞增殖均快于珍珠粉0组(P < 0.05);培养1 d的活死染色显示,各组支架上的细胞数量较少,但均为活细胞;④将骨髓间充质干细胞分别接种至珍珠粉0组、珍珠粉0.1组支架表面进行成骨诱导分化,珍珠粉0.1组诱导4,6 d的碱性磷酸酶活性高于珍珠粉0组(P < 0.05);⑤结果表明,左旋聚乳酸/珍珠粉复合支架具有良好的抗压强度、亲水性、细胞相容性与促成骨性能。

https://orcid.org/0000-0002-1507-2539(刚芳莉)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 低温冷凝沉积法, 3D打印, 左旋聚乳酸, 珍珠粉, 复合支架, 骨组织修复, 细胞相容性, 成骨分化

Abstract: BACKGROUND: The repair of large-scale bone defects is still facing serious challenges. It is of great significance to develop personalized, low-cost, and osteogenic-inducing tissue engineering scaffolds for bone repair.
OBJECTIVE: To explore the process of 3D printing bone tissue engineering scaffold containing pearl composite material by low-temperature condensation deposition method, and further test the physicochemical properties and in vitro biological functions of the composite scaffold. 
METHODS: Pearl powder was prepared by grinding and sieving. The pearl powder of different qualities was added into the poly-L-lactic acid ink, so that the mass ratio of pearl powder to poly-L-lactic acid was 0, 0.1, 0.2, 0.3, and 0.5, respectively. The 3D-printed poly-L-lactic acid/pearl powder scaffolds were prepared using the low-temperature condensation deposition method. The microstructure, compressive properties, water contact angle, cytocompatibility, and in vitro bone differentiation ability of the printed poly-L-lactic acid/pearl powder composite scaffolds were detected. 
RESULTS AND CONCLUSION: (1) Scanning electron microscopy showed that the five groups of scaffolds all had micropores with a diameter of 2 μm or even smaller, irregular shapes and interconnectivity. (2) All the five groups had good compressive properties. The compressive strength of the pearl powder 0.5 group was higher than that of the other four groups (P < 0.05). The water contact angle of the pearl powder 0.2 group and the pearl powder 0.5 group was smaller than that of the pearl powder 0 group (P < 0.01, P < 0.001). (3) Bone marrow mesenchymal stem cells were co-cultured with five groups of scaffolds for 1, 3, and 5 days, respectively. The cell proliferation in pearl powder 0.1, 0.2, 0.3, and 0.5 groups cultured for 3 and 5 days was faster than that in pearl powder 0 group (P < 0.05). After 1 day of culture, live-dead staining exhibited that the number of cells on the scaffold was small, but all of them were living cells. (4) Bone marrow mesenchymal stem cells were inoculated on the scaffold surface of the pearl powder 0 group and pearl powder 0.1 group respectively for osteogenic differentiation. The alkaline phosphatase activity induced for 4 and 6 days in the pearl powder 0.1 group was higher than that in the pearl powder 0 group (P < 0.05). (5) The results showed that the poly-L-lactic acid/pearl powder composite scaffold had good compressive strength, hydrophilicity, cytocompatibility, and osteogenic properties.

Key words: low-temperature condensation deposition method, 3D printing, poly-L-lactic acid, pearl powder, composite scaffold, bone tissue repair, cytocompatibility, osteogenic differentiation

中图分类号: