中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (16): 2557-2561.doi: 10.12307/2022.257

• 材料力学及表面改性 material mechanics and surface modification • 上一篇    下一篇

制备赖氨酸改性聚乳酸纳米纤维支架的性能评价

李  煜,潘源城,林  然,陈顺有   

  1. 厦门大学附属福州第二医院小儿骨科,福建省福州市   350007
  • 收稿日期:2020-11-13 修回日期:2020-11-17 接受日期:2021-01-16 出版日期:2022-06-08 发布日期:2021-12-23
  • 通讯作者: 陈顺有,博士,副教授,副主任医师,硕士生导师,厦门大学附属福州第二医院小儿骨科,福建省福州市 350007
  • 作者简介:李煜,女,1995年生,福建省福州市人,汉族,福建中医药大学在读硕士,主要从事儿童骨科研究。
  • 基金资助:
    福建省自然科学基金项目(2018J01361),项目负责人:陈顺有

Evaluation on the preparation and performance of lysine modified polylactic acid nanofiber stent

Li Yu, Pan Yuancheng, Lin Ran, Chen Shunyou   

  1. Department of Pediatric Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, Fujian Province, China
  • Received:2020-11-13 Revised:2020-11-17 Accepted:2021-01-16 Online:2022-06-08 Published:2021-12-23
  • Contact: Chen Shunyou, MD, Associate professor, Associate chief physician, Master’s supervisor, Department of Pediatric Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, Fujian Province, China
  • About author:Li Yu, Master candidate, Department of Pediatric Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, Fujian Province, China
  • Supported by:
    Natural Science Foundation Project of Fujian Province, No. 2018J01361 (to CSY) 

摘要:

文题释义:
聚乳酸:是热塑性聚酯,由于其生物降解性、无毒性、良好的加工性和优异的机械性能在组织再生材料中得到了广泛的研究及应用,但存在降解速度较慢的缺点,其在骨组织中的降解速度较慢,长期存在于体内易导致炎症等并发症,且生物相容性仍不能很好地满足生物材料需要。
赖氨酸:是为碱性必需氨基酸,是蛋白质的重要组成部分之一,具有无毒性、抗菌性、生物可降解性,促进细胞生长和黏附以及促进细胞发挥正常功能等作用。成骨细胞在分化过程中分泌大量的细胞外基质,成骨细胞的细胞外基质包含胶原蛋白和非胶原蛋白,在碱性环境中具有更好的黏附、生长和钙化的能力,但其强度低、脆性大的特点限制了其作为组织工程支架材料的应用。


背景:聚乳酸作为可降解聚合物已被制成纳米纤维支架广泛应用于组织再生,但在某些组织工程应用中其作为支架材料存在降解速度慢、生物相容性差等局限。
目的:制备赖氨酸/聚乳酸支架,通过控制不同赖氨酸浓度研究支架的结构及性能。
方法:以1,4-二氧六环为溶剂体系、赖氨酸作为氨解剂,采用热致相分离技术制备赖氨酸改性聚乳酸纳米纤维支架,其中赖氨酸的浓度分别为5%,10%,15%,30%,以未改性的聚乳酸支架为对照,进行傅里叶变换红外光谱仪、扫描电镜、示差扫描仪热分析仪、接触角和机械性能分析等检测。 
结果与结论:①傅里叶变换红外光谱分析显示,聚乳酸支架被赖氨酸氨解改性成功;②扫描电镜显示,当非溶剂相为超轻水时,支架的纤维网格结构较差,未形成立体的三维结构;当赖氨酸浓度为5%时,支架呈片状、带状或大量团聚现象,没有形成良好的三维纤维的网络结构;随着赖氨酸浓度的增加,支架的纳米纤维结构逐渐形成,当赖氨酸浓度为10%时制备的支架仍存在片状及出现团聚现象;当赖氨酸浓度为15%时,支架有分布相对均匀的纳米纤维结构;但当赖氨酸浓度为30%时,支架纤维结构出现坍塌和大片团聚现象;③随着赖氨酸浓度的增加,支架的水接触角减少、抗压强度降低;④随着赖氨酸浓度的增加,支架的熔融温度稍有降低,但无明显变化,结晶度增加;⑤结果表明,赖氨酸的引入改善了聚乳酸支架的网格状纤维结构、亲水性和结晶度,降低了支架的机械性能。

https://orcid.org/0000-0001-9850-2479 (李煜) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性;组织工程

关键词: 聚乳酸, 纳米纤维, 支架, 赖氨酸, 热致相分离技术, 组织工程

Abstract: BACKGROUND: Polylactic acid as a biodegradable polymer has been made into nanofiber stent, widely used in tissue regeneration. However, as a scaffold material, polylactic acid has some limitations, such as slow degradation rate and poor biocompatibility. 
OBJECTIVE: To prepare lysine-polylactic acid stents to study the structure and properties of stents by controlling different lysine concentrations.  
METHODS: With 1, 4-dioxane as solvent system and lysine as an ammonia solution, thermally induced phase separation technology was used to prepare the lysine-polylactic acid stents. Lysine concentrations were 5%, 10%, 15%, 30%, respectively. The detection of Fourier transform infrared spectrometer, scanning electron microscope, differential scanner thermal analyzer, contact angle and mechanical performance analysis were carried out with the unaltered polylactic acid bracket as the control. 
RESULTS AND CONCLUSION: (1) Fourier transform infrared spectral analysis showed that the polylactic acid stent was successfully modified by lysine ammonia. (2) The scanning electron microscope showed that when the non-solvent phase was deuterium depleted water, the fiber mesh structure of the bracket was poor and no three-dimensional structure was formed. When the concentration of lysine was 5%, the stent was flaky, ribbon or a large number of reunion phenomenon, and no good three-dimensional fiber network structure was formed. With the increase of lysine concentration, the nanofiber structure of the stent gradually formed. When the concentration of lysine was 10%, the prepared stent still had flaky and reunion phenomenon. When the concentration of lysine was 15%, the stent had a relatively uniform distribution of nanofiber structure. However, when the concentration of lysine was 30%, the structure of stent fiber collapsed and large areas reunited. (3) With the increase of lysine concentration, the water contact angle of the stent was reduced and the strength of pressure was reduced. (4) With the increase of lysine concentration, the melting temperature of the stent decreased slightly, but there was no obvious change, and the crystallization increased. (5) The results show that the introduction of lysine improves the mesh fiber structure, hydrophobicity and crystallization of polylactic acid stent and reduces the mechanical properties of the bracket. 

Key words: polylactic acid, nanofiber, stent, lysine, thermal induced phase separation technology, tissue engineering

中图分类号: