[1] VARGHESE J, RAJAGOPAL A, SHANMUGASUNDARAM S. Role of biomaterials used for periodontal tissue regeneration-a concise evidence-based review. Polymers (Basel). 2022;14(15):3038.
[2] 陈发明,高丽娜,陈芳.牙周再生治疗现状和进展[J].口腔疾病防治,2019,27(1):9-16.
[3] EL-KADIRY AE, RAFEI M, SHAMMAA R. Cell therapy: types, regulation, and clinical benefits. Front Med (Lausanne). 2021;8: 756029.
[4] 王畅,张茜,刘悦,等.牙周组织再生材料应用研究进展[J].化学与生物工程,2022,39(6):18-21.
[5] THALAKIRIYAWA DS, DISSANAYAKA WL. Advances in regenerative dentistry approaches: an update. Int Dent J. 2024;74(1):25-34.
[6] 郑晓雪.淫羊藿苷诱导的牙囊干细胞条件培养基对MC3T3-E1增殖、迁移及成骨分化的影响[D].长春:吉林大学,2022.
[7] YANG C, DU XY, LUO W. Clinical application prospects and transformation value of dental follicle stem cells in oral and neurological diseases. World J Stem Cells. 2023;15(4):136-149.
[8] GUO S, GUO W, DING Y, et al. Comparative study of human dental follicle cell sheets and periodontal ligament cell sheets for periodontal tissue regeneration. Cell Transplant. 2013;22(6):1061-1073.
[9] 蒙盛子,刘蓉,罗雅馨,等.牙囊干细胞应用于牙及牙周组织再生修复的前景及临床转化价值[J].中国组织工程研究,2022,26(19): 3095-3099.
[10] SANCILIO S, MARSICH E, SCHWEIKL H, et al. Redox control of il-6-mediated dental pulp stem-cell differentiation on alginate/hydroxyapatite biocomposites for bone ingrowth. Nanomaterials (Basel). 2019;9(12):1656.
[11] TERRANOVA L, LOUVRIER A, HÉBRAUD A, et al. Highly structured 3D electrospun conical scaffold: a tool for dental pulp regeneration. ACS Biomater Sci Eng. 2021;7(12):5775-5787.
[12] RENAUD M, BOUSQUET P, MACIAS G, et al. Allogenic stem cells carried by porous silicon scaffolds for active bone regeneration in vivo. Bioengineering (Basel). 2023;10(7):852.
[13] ZAWADZKA-KNEFEL A, RUSAK A, MROZOWSKA M, et al. Chitin scaffolds derived from the marine demosponge Aplysina fistularis stimulate the differentiation of dental pulp stem cells. Front Bioeng Biotechnol. 2023;11:1254506.
[14] YU BH, ZHOU Q, WANG ZL. Periodontal ligament versus bone marrow mesenchymal stem cells in combination with Bio-Oss scaffolds for ectopic and in situ bone formation: a comparative study in the rat. J Biomater Appl. 2014;29(2):243-253.
[15] LIANG C, WANG G, LIANG C, et al. Hierarchically patterned triple-layered gelatin-based electrospun membrane functionalized by cell-specific extracellular matrix for periodontal regeneration. Dent Mater. 2024;40(1):90-101.
[16] WANG W, WANG A, HU G, et al. Potential of an aligned porous hydrogel scaffold combined with periodontal ligament stem cells or gingival mesenchymal stem cells to promote tissue regeneration in rat periodontal defects. ACS Biomater Sci Eng. 2023;9(4):1961-1975.
[17] YANG M, GUO Z, LI T, et al. Synergetic effect of chemical and topological signals of gingival regeneration scaffold on the behavior of human gingival fibroblasts. J Biomed Mater Res A. 2019;107(9): 1875-1885.
[18] SAKULPAPTONG W, CLAIRMONTE IA, BLACKSTONE BN, et al. 3D engineered human gingiva fabricated with electrospun collagen scaffolds provides a platform for in vitro analysis of gingival seal to abutment materials. PLoS One. 2022;17(2):e0263083.
[19] KARABULUT H, ULAG S, DALBAYRAK B, et al. A novel approach for the fabrication of 3d-printed dental membrane scaffolds including antimicrobial pomegranate extract. Pharmaceutics. 2023;15(3):737.
[20] MORSCZECK C. Mechanisms during osteogenic differentiation in human dental follicle cells. Int J Mol Sci. 2022;23(11):5945.
[21] MORSCZECK C. Molecular mechanisms in dental follicle precursor cells during the osteogenic differentiation. Histol. 2015;30(10):1161-1169.
[22] SHOI K, AOKI K, OHYA K, et al. Characterization of pulp and follicle stem cells from impacted supernumerary maxillary incisors. Pediatr Dent. 2014;36(3):79-84.
[23] 王贺,吴补领,段小红.小鼠牙囊细胞体外培养方法与形态特征探讨[J].牙体牙髓牙周病学杂志,2015,25(6):370-374.
[24] 董正谋,刘锐,刘鲁川,等.种子细胞在牙周组织再生治疗中的研究进展[J].国际口腔医学杂志,2019,46(1):48-54.
[25] MOSADDAD SA, RASOOLZADE B, NAMANLOO RA, et al. Stem cells and common biomaterials in dentistry: a review study. J Mater Sci Mater Med. 2022;33(7):55.
[26] BI R, LYU P, SONG Y, et al. Function of dental follicle progenitor/stem cells and their potential in regenerative medicine: from mechanisms to applications. Biomolecules. 2021;11(7):997.
[27] SOWMYA S, CHENNAZHI KP, ARZATE H, et al. Periodontal specific differentiation of dental follicle stem cells into osteoblast, fibroblast, and cementoblast. Tissue Eng. 2015;21:1044-1058.
[28] 陶昱,喻金凤,陈军,等.人牙髓细胞条件培养液对人牙囊细胞成骨分化作用的体外研究[J].实用口腔医学杂志,2017,33(3):339-343.
[29] KARAMZADEH R, BAGHABAN ESLAMINEJAD M, SHARIFI-ZARCHI A. Comparative in vitro evaluation of human dental pulp and follicle stem cell commitment. Cell J. 2016;18(4):609-618.
[30] 张琳琳,安莹,陈发明,等.牙源性干细胞的研究进展[J].实用口腔医学杂志,2015,31(3):425-431.
[31] PATIL R, KUMAR BM, LEE WJ, et al, Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor, Exp Cell Res. 2014;320(1):92-107.
[32] SUNG IY, SON HN, ULLAH I, et al. Cardiomyogenic differentiation of human dental follicle-derived stem cells by suberoylanilide hydroxamic acid and their in vivo homing property. Int J Med Sci. 2016;13(11):841-852.
[33] YANG C, SUN L, LI X, et al. The potential of dental stem cells differentiating into neurogenic cell lineage after cultivation in different modes in vitro. Cell Reprogram. 2014;16(5):379-391.
[34] SANTILLI F, FABRIZI J, SANTACROCE C, et al. Analogies and differences between dental stem cells: focus on secretome in combination with scaffolds in neurological disorders. Stem Cell Rev Rep. 2024;20(1):159-174.
[35] CAI R, WANG L, ZHANG W, et al. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol. 2023;14:1151322.
[36] LEVY O, KUAI R, SIREN EMJ, et al. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv. 2020;6(30):eaba6884.
[37] RIAZIFAR M, PONE EJ, LÖTVALL J, et al. Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol. 2017;57:125-154.
[38] MULCAHY LA, PINK RC, CARTER DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014. DOI: 10.3402/jev.v3.24641.
[39] 朱梦远.LIPUS诱导的hDFSCs外泌体对hDFSCs增殖分化的作用机制研究[D].重庆:重庆医科大学,2020.
[40] SHI W, GUO S, LIU L, et al. Small extracellular vesicles from lipopolysaccharide-preconditioned dental follicle cells promote periodontal regeneration in an inflammatory microenvironment. ACS Biomater Sci Eng. 2020;6(10):5797-5810.
[41] HUANG Y, LIU Q, LIU L, et al. Lipopolysaccharide-preconditioned dental follicle stem cells derived small extracellular vesicles treating periodontitis via reactive oxygen species/mitogen-activated protein kinase signaling-mediated antioxidant effect. Int J Nanomedicine. 2022;17:799-819.
[42] 黄少阳.牙囊干细胞来源的外泌体在骨缺损修复中的实验研究[D].昆明:昆明医科大学,2023.
[43] 马丽娅.牙囊干细胞源外泌体调控牙周膜干细胞促进牙周组织再生的相关研究[D]. 昆明:昆明医科大学,2021.
[44] MA L, RAO N, JIANG H, et al. Small extracellular vesicles from dental follicle stem cells provide biochemical cues for periodontal tissue regeneration. Stem Cell Res Ther. 2022;13(1):92.
[45] 田俊,李梦婕,韦曦.大鼠牙囊干细胞来源外泌体免疫调节牙髓炎的体内研究[C]//中华口腔医学会牙体牙髓病学专业委员会.中华口腔医学会牙体牙髓病学专业委员会第十四次全国牙体牙髓病学学术大会论文汇编.中山大学附属口腔医院广东省口腔医学重点实验室;2022:3. doi:10.26914/c.cnkihy.2022.064354.
[46] 田俊,李梦婕,于抗抗,等.大鼠牙囊干细胞来源外泌体诱导巨噬细胞向M2型极化的体外研究[C]//中国化学会化学生物学专业委员会.第十一届全国化学生物学学术会议论文摘要(第二卷).中山大学光华口腔医学院·附属口腔医院广东省口腔医学重点实验室;四川大学生命科学学院;绿色化学与技术教育部重点实验室四川大学化学学院;2019:1. doi:10.26914/c.cnkihy.2019.087965.
[47] MAI Z, CHEN H, YE Y, et al. Translational and clinical applications of dental stem cell-derived exosomes. Front Genet. 2021;12:750990.
[48] LANE SW, WILLIAMS DA, WATT FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32(8):795-803.
[49] MORSCZECK C, DE PELLEGRIN M, RECK A, et al. Evaluation of current studies to elucidate processes in dental follicle cells driving osteogenic differentiation. Biomedicines. 2023;11(10):2787.
[50] VIALE-BOURONCLE S, KLINGELHÖFFER C, ETTL T, et al. A protein kinase A (PKA)/β-catenin pathway sustains the BMP2/DLX3-induced osteogenic differentiation in dental follicle cells (DFCs). Cell Signal. 2015;27(3):598-605.
[51] SAKISAKA Y, TSUCHIYA M, NAKAMURA T, et al. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells. Exp Cell Res. 2015;336(1):85-93.
[52] PIELES O, REICHERT TE, MORSCZECK C. Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both β-catenin and NF-κB. Stem Cell Res Ther. 2021;12(1):242.
[53] 陈学鹏,施洁珺,叶青松,等.p38 MAPK信号通路在BMP-2诱导人牙囊细胞成骨分化中的作用[J].中国细胞生物学学报,2013, 35(6):816-823.
[54] YANG JW, ZHU LX, YUAN GH, et al. Autophagy appears during the development of the mouse lower first molar. Histochem Cell Biol. 2013;139(1):109-118.
[55] MORSCZECK C. Mechanisms during osteogenic differentiation in human dental follicle cells. Int J Mol Sci. 2022;23(11):5945.
[56] BOUSNAKI M, BEKETOVA A, KONTONASAKI E. A review of in vivo and clinical studies applying scaffolds and cell sheet technology for periodontal ligament regeneration. Biomolecules. 2022;12(3):435.
[57] HUANG Y, LIU Q, LIU L, et al. Lipopolysaccharide-preconditioned dental follicle stem cells derived small extracellular vesicles treating periodontitis via reactive oxygen species/mitogen-activated protein kinase signaling-mediated antioxidant effect. Int J Nanomedicine. 2022;17:799-819.
[58] 姜震,颜燕宏,韩雪,等.大肠杆菌脂多糖对大鼠牙囊干细胞生物学行为的影响[J].口腔医学研究,2023,39(6):534-540.
[59] WEI X, LIU Q, LIU L, et al. Periostin plays a key role in maintaining the osteogenic abilities of dental follicle stem cells in the inflammatory microenvironment. Arch Oral Biol. 2023;153:105737.
[60] WEI X, GUO S, LIU Q, et al. Dental follicle stem cells promote periodontal regeneration through periostin-mediated macrophage infiltration and reprogramming in an inflammatory microenvironment. Int J Mol Sci. 2023;24(7):6353.
[61] 梁熙,陈国庆,田卫东.低氧对人DFCs生物学特性的影响[J].华西口腔医学杂志,2017,35(3):245-252.
[62] 赵娴,曾锦,左东川,等.钙离子对人牙囊细胞增殖、迁移和成骨分化的影响[J].上海口腔医学,2019,28(6):572-577.
[63] 杨晶晶,左东川,谢沂航等.T型钙通道对人牙囊细胞成骨分化的影响[J].口腔医学研究,2021,37(10):900-905.
[64] SHANG LL, SHAO JL, GE SH. Immunomodulatory functions of oral mesenchymal stem cells: novel force for tissue regeneration and disease therapy. J Leukoc Biol. 2021;110(3):539-552.
[65] 冉玲,李晓倩,蒋欣益,等.超声微泡介导pEGFP-N1转染大鼠牙囊细胞:细胞生物学性质相对稳定[J].中国组织工程研究,2014, 18(50):8151-8155.
[66] BELMANS N, GILLES L, WELKENHUYSEN J, et al. In vitro assessment of the dna damage response in dental mesenchymal stromal cells following low dose X-ray exposure. Front Public Health. 2021;9: 584484.
[67] MORSCZECK C, PIELES O, RECK A, et al. DNA protein kinase promotes cellular senescence in dental follicle cells. Arch Oral Biol. 2023. doi: 10.1016/j.archoralbio.2023.105676
[68] 郑晓雪,王乙行,陶天翼,等.淫羊藿苷对人牙囊干细胞旁分泌作用的影响[J].医学研究杂志,2022,51(9):65-70,141.
[69] PIELES O, RECK A, REICHERT TE, et al. p53 inhibits the osteogenic differentiation but does not induce senescence in human dental follicle cells. Differentiation. 2020;114:20-26.
[70] DASI D, NALLABELLI N, DEVALARAJU R, et al. Curcumin attenuates replicative senescence in human dental follicle cells and restores their osteogenic differentiation. J Oral Biosci. 2023;65(4):371-378.
[71] 刘路,彭正军,韦曦等.牙乳头/牙囊细胞交互作用对细胞多能性的作用[J].牙体牙髓牙周病学杂志,2015,25(2):63-67.
[72] 王畅,张茜,刘悦,等.牙周组织再生材料应用研究进展[J].化学与生物工程,2022,39(6):18-21.
[73] WANG X, CHEN J, TIAN W. Strategies of cell and cell-free therapies for periodontal regeneration: the state of the art. Stem Cell Res. 2022; 13(1):536.
[74] FIGUEIREDO TM, DO AMARAL GCLS, BEZERRA GN, et al. Three-dimensional-printed scaffolds for periodontal regeneration: a systematic review. J Indian Soc Periodontol. 2023;27(5):451-460.
[75] SHOPOVA D, MIHAYLOVA A, YANEVA A, et al. Advancing dentistry through bioprinting: personalization of oral tissues. J Funct Biomater. 2023;14(10):530.
[76] SUI BD, ZHENG CX, ZHAO WM, et al. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiological. 2023;103(3):1899-1964.
[77] SONG Y, LONG J, DUNKERS JP, et al. Micromechanical compatibility between cells and scaffolds directs the phenotypic transition of stem cells. ACS Appl Mater Interfaces. 2021;13(48):58152-58161.
[78] FU T, LIANG P, SONG J, et al. Matrigel scaffolding enhances BMP9-induced bone formation in dental follicle stem/precursor cells. Int J Med Sci. 2019;16(4):567-575.
[79] 刘红,杨超,陈国庆,等.纤维蛋白胶不同复合方式对牙囊细胞增殖活性的影响[J].华西口腔医学杂志,2015,33(2):135-140.
[80] ASKARI M, NANIZ MA, KOUHI M, et al. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci. 2021;9(3):535-573.
[81] VARGHESE J, RAJAGOPAL A, SHANMUGASUNDARAM S. Role of biomaterials used for periodontal tissue regeneration-a concise evidence-based review. Polymers (Basel). 2022;14(15):3038.
[82] ABEDI N, RAJABI N, KHARAZIHA M, et al. Layered scaffolds in periodontal regeneration. J Oral Biol Craniofac Res. 2022;12(6):782-797.
[83] SOWMYA S, MONY U, JAYACHANDRAN P, et al. Tri-layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv Healthc Mater. 2017;6:1601251.
[84] BAHRAMI N, MANAFI Z, MOHAMMADI F, et al. Neural differentiation of wisdom tooth follicle stem cells on a nano-hydrogel scaffold containing salvia chloroleucat to treat nerve injury in the cancer of nervous system. Asian Pac J Cancer Prev. 2023;24(2):649-658.
[85] RODRIGUES SC, SALGADO CL, SAHU A, et al. Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. J Biomed Mater Res. 2013;101A:1080-1094.
[86] ERCAL P, PEKOZER GG. A current overview of scaffold-based bone regeneration strategies with dental stem cells. Adv Exp Med Biol. 2020; 1288:61-85.
[87] ZHANG X, DU Y, LING J, et al. Dickkopf-related protein 3 negatively regulates the osteogenic differentiation of rat dental follicle cells. Mol Med Rep. 2017;15(4):1673-1681.
[88] NIE L, YANG X, DUAN L, et al. The healing of alveolar bone defects with novel bio-implants composed of Ad-BMP9-transfected rDFCs and CHA scaffolds. Sci Rep. 2017;7(1):6373.
[89] MATLAHOV I, KULPANOVICH A, ILINE-VUL T, et al. Selective excitation with recoupling pulse schemes uncover properties of disordered mineral phases in bone-like apatite grown with bone proteins. Solid State Nucl Magn Reson. 2023;124:101860.
[90] COSTA AC, ALVES PM, MONTEIRO FJ, et al. Interactions between dental MSCs and biomimetic composite scaffold during bone remodeling followed by in vivo real-time bioimaging. Int J Mol Sci. 2023;24(3):1827.
[91] SARVIYA N, BASU SM, INDUVAHI V, et al. Laponite-gelatin nanofibrous microsphere promoting human dental follicle stem cells attachment and osteogenic differentiation for noninvasive stem cell transplantation. Macromol Biosci. 2023;23(1):e2200347.
[92] OLTEANU D, FILIP A, SOCACI C, et al. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids Surf B Biointerfaces. 2015;136:791-798.
[93] NIKNAM Z, HOSSEINZADEH F, SHAMS F, et al. Recent advances and challenges in graphene-based nanocomposite scaffolds for tissue engineering application. J Biomed Mater Res A. 2022;110(10):1695-1721.
[94] WANG T, ZHOU Y, ZHANG W, et al. Exosomes and exosome composite scaffolds in periodontal tissue engineering. Front Bioeng Biotechnol. 2024;11:1287714.
[95] ZIBANDEH N, GENC D, DURAN Y, et al. Human dental follicle mesenchymal stem cells alleviate T cell response in inflamed tissue of Crohn’s patients. Turk J Gastroenterol. 2020;31(5):400-409. |