[1] 郑桂婷,徐燕,吴明月.种植体周围疾病治疗的专家共识及治疗方法的进展[J].国际口腔医学杂志,2020,47(6):725-731.
[2] WU X, QIAO S, WANG W, et al. Melatonin prevents periimplantitis via suppression of TLR4/NF-κB. Acta Biomater. 2021;134:325-336.
[3] DREYER H, GRISCHKE J, TIEDE C, et al. Epidemiology and risk factors of peri‐implantitis: A systematic review. J Periodontal Res. 2018;53(5):657-681.
[4] 毛舜,谢辉.种植体周围病治疗新进展[J].中国口腔种植学杂志,2020, 25(2):85.
[5] DARBY I. Risk factors for periodontitis & peri‐implantitis. Periodontol 2000. 2022;90(1):9-12.
[6] WANG X, LI Y, FENG Y, et al. The role of macrophages in osseointegration of dental implants: An experimental study in vivo. J Biomed Mater Res A. 2020;108(11):2206-2216.
[7] SHAPOURI‐MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-6440.
[8] 杨成雪,喻正文,范芹.种植体周围病的病因及危险因素[J].临床口腔医学杂志,2020,36(5):313-316.
[9] GALARRAGA‐VINUEZA ME, DOHLE E, RAMANAUSKAITE A, et al. Anti‐inflammatory and macrophage polarization effects of Cranberry Proanthocyanidins (PACs) for periodontal and peri‐implant disease therapy. J Periodontal Res. 2020;55(6):821-829.
[10] 夏冬景,裴浩.脂多糖诱导钛种植体周围骨髓间质细胞炎症中的巨噬细胞游走抑制因子[J].中国组织工程研究,2015,19(32):5123.
[11] LU J, ZHANG H, PAN J, et al. Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther. 2021;23(1):142.
[12] SUN X, GAO J, MENG X, et al. Polarized macrophages in periodontitis: characteristics, function, and molecular signaling. Front Immunol. 2021;12: 763334.
[13] JIAO P, LI Z, LI B, et al. The role of caspase-11 and pyroptosis in the regulation of inflammation in peri-implantitis. J Inflamm Res. 2023:16:4471-4479.
[14] HOPPSTÄDTER J, DEMBEK A, LINNENBERGER R, et al. Toll-like receptor 2 release by macrophages: an anti-inflammatory program induced by glucocorticoids and lipopolysaccharide. Front Immunol. 2019;10:1634.
[15] LANGSTON P K, NAMBU A, JUNG J, et al. Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses. Nat Immunol. 2019; 20(9):1186-1195.
[16] BOSSHARDT DD, CHAPPUIS V, BUSER D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000. 2017;73(1):22-40.
[17] FRETWURST T, NELSON K, TARNOW DP, et al. Is metal particle release associated with peri-implant bone destruction? An emerging concept. J Dent Res. 2018;97(3):259-265.
[18] SHAH R, PENMETSA DSL, THOMAS R, et al. Titanium Corrosion: Implications For Dental Implants. Eur J Prosthodont Restor Dent. 2016;24(4):171-180.
[19] BYUN MR, KIM AR, HWANG JH, et al. FGF2 stimulates osteogenic differentiation through ERK induced TAZ expression. Bone. 2014;58:72-80.
[20] ZHU W, MING P, QIU J, et al. Effect of titanium ions on the Hippo/YAP signaling pathway in regulating biological behaviors of MC3T3‐E1 osteoblasts. J Appl Toxicol. 2018;38(6):824-833.
[21] PARK JB, JEON Y, KO Y. Effects of titanium brush on machined and sand‐blasted/acid‐etched titanium disc using confocal microscopy and contact profilometry. Clin Oral Implan Res. 2015;26(2):130-136.
[22] EGER M, STERER N, LIRON T, et al. Scaling of titanium implants entrains inflammation-induced osteolysis. Sci Rep. 2017;7(1):39612.
[23] BERRYMAN Z, BRIDGER L, HUSSAINI HM, et al. Titanium particles: An emerging risk factor for peri-implant bone los]. Saudi Dent J. 2020;32(6):283-292.
[24] GALARRAGA VINUEZA ME, OBREJA K, BEGIC A, et al. Macrophage polarization in peri‐implantitis lesions. Clin Oral Implan Res. 2020;31:6-6.
[25] GAO X, GE J, LI W, et al. NF-κB/let-7f-5p/IL-10 pathway involves in wear particle-induced osteolysis by inducing M1 macrophage polarization. Cell Cycle. 2018;17(17):2134-2145.
[26] WANG J, CHEN H J, HANG T, et al. Physical activation of innate immunity by spiky particles. Nat Nanotechnol. 2018;13(11):1078-1086.
[27] RAO AJ, GIBON E, MA T, et al. Revision joint replacement, wear particles, and macrophage polarization. Acta Biomater. 2012;8(7):2815-2823.
[28] LABIS V, BAZIKYAN E, SIZOVA S, et al. Immunopathological Inflammation in the Evolution of Mucositis and Peri-Implantitis. Int J Mol Sci. 2022;23(24): 15797.
[29] WU J, ZHANG L, SHI J, et al. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury. EBioMedicine. 2020:58:102920.
[30] VERGADI E, IERONYMAKI E, LYRONI K, et al. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198(3): 1006-1014.
[31] 韦雨杏,董皓,韦惠平,等.种植体周围炎炎性组织差异表达基因的筛选及验证[J].中国组织工程研究,2023,27(30):4844.
[32] 苑舒月,刘春艳,刘冰,等.巨噬细胞的极化与牙周炎[J].中国组织工程研究,2023,27(17):2699.
[33] LAI J, LIU Y, LIU C, et al. Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation. 2017;40:1-12.
[34] SCHAPPE MS, SZTEYN K, STREMSKA ME, et al. Chanzyme TRPM7 mediates the Ca2+ influx essential for lipopolysaccharide-induced toll-like receptor 4 endocytosis and macrophage activation. Immunity. 2018;48(1):59-74.e5.
[35] FANG J, OU Q, WU B, et al. TcpC inhibits M1 but promotes M2 macrophage polarization via regulation of the MAPK/NF-κB and Akt/STAT6 pathways in urinary tract infection. Cells. 2022;11(17):2674.
[36] KOUTOUZIS T, CATANIA D, NEIVA K, et al. Innate immune receptor expression in peri‐implant tissues of patients with different susceptibility to periodontal diseases. J Periodontol. 2013;84(2):221-229.
[37] ZHANG Y, XIAO J, DENG S, et al. IRAK-4 in macrophages contributes to inflammatory osteolysis of wear particles around loosened hip implants. Innate Immun. 2021;27(6):470-482.
[38] CHANMEE T, ONTONG P, KONNO K, et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6(3):1670-1690.
[39] 张晓非,吕震,王小泉,等.人工关节假体周围无菌性松动的发生机制[J].天津医药,2020,48(6):572-576.
[40] UENO T, YAMAMOTO Y, KAWASAKI K. Phagocytosis of microparticles increases responsiveness of macrophage-like cell lines U937 and THP-1 to bacterial lipopolysaccharide and lipopeptide. Sci Rep. 2021;11(1):6782.
[41] KARTIKASARI N, YAMADA M, WATANABE J, et al. Titania nanospikes activate macrophage phagocytosis by ligand-independent contact stimulation. Sci Rep. 2022;12(1):12250.
[42] LAI S, CHEN L, CAO W, et al. Dicalcium silicate induced proinflammatory responses through TLR2-mediated NF-κB and JNK pathways in the murine RAW 264.7 macrophage cell line. Mediat Inflamm. 2018;2018:8167932.
[43] JIN R, LIU L, ZHU W, et al. Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling. Biomaterials. 2019;203:23-30.
[44] 李依峣,鲁元,王旭,等.Toll样受体家族在神经炎症性疾病中的作用机制研究进展[J].中国新药杂志,2022,31(16):1602-1607.
[45] WANG N, LIANG H, ZEN K. Molecular mechanisms that influence the macrophage M1–M2 polarization balance. Front Immunol. 2014;5:614.
[46] 余元勋.中国分子白血病学[M].合肥:安徽科学技术出版社,2016.
[47] LIN YH, WANG YH, PENG YJ, et al. Interleukin 26 skews macrophage polarization towards M1 phenotype by activating cJUN and the NF-κB pathway. Cells-Basel. 2020;9(4):938.
[48] DAN H, LIU S, LIU J, et al. RACK1 promotes cancer progression by increasing the M2/M1 macrophage ratio via the NF‐κB pathway in oral squamous cell carcinoma. Mol Oncol. 2020;14(4):795-807.
[49] ZHANG W, ZHANG Y, HE Y, et al. Lipopolysaccharide mediates time-dependent macrophage M1/M2 polarization through the Tim-3/Galectin-9 signalling pathway. Exp Cell Res. 2019;376(2):124-132.
[50] AVERY D, MORANDINI L, SHEAKLEY LS, et al. Canonical Wnt signaling enhances pro-inflammatory response to titanium by macrophages. Biomaterials. 2022;289:121797.
[51] FANG XY, ZHAN YX, ZHOU XM, et al. CXCL12/CXCR4 mediates orthodontic root resorption via regulating the M1/M2 ratio. J Dent Res. 2022;101(5): 569-579.
[52] WANG F, STAPPENBECK F, TANG LY, et al. Oxy210, a semi-synthetic oxysterol, exerts anti-inflammatory effects in macrophages via inhibition of toll-like receptor (TLR) 4 and TLR2 signaling and modulation of macrophage polarization. Int J Mol Sci. 2022;23(10):5478.
[53] NALAMOLU KR, CHALLA SR, FORNAL CA, et al. Attenuation of the induction of TLRs 2 and 4 mitigates inflammation and promotes neurological recovery after focal cerebral ischemia. Transl Stroke Res. 2021;12:923-936.
[54] SOMENSI N, RABELO TK, GUIMARÃES AG, et al. Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. Int Immunopharmacol. 2019;75:105743.
[55] LUO J, WANG J, ZHANG J, et al. Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy-and NF-κB/PPARγ-mediated macrophage polarization. Cells. 2022;11(23):3927.
[56] SANG R, YU Y, GE B, et al. Taraxasterol from Taraxacum prevents concanavalin A-induced acute hepatic injury in mice via modulating TLRs/NF-κB and Bax/Bc1-2 signalling pathways. Artif Cell Nanomed B. 2019;47(1):3929-3937.
[57] YANG J, PAN Y, ZENG X, et al. Discovery of novel aporphine alkaloid derivative as potent TLR2 antagonist reversing macrophage polarization and neutrophil infiltration against acute inflammation. Acta Pharm Sin B. 2023;13(9):3782-3801.
[58] WANG X, CHEN X, ZHANG Z, et al. Asperuloside Prevents Peri-Implantitis via Suppression of NF-κB and ERK1/2 on Rats. Pharmaceuticals-Base. 2022;15(8):1027.
[59] ZHANG J, TYLER HL, HARON MH, et al. Macrophage activation by edible mushrooms is due to the collaborative interaction of toll-like receptor agonists and dectin-1b activating beta glucans derived from colonizing microorganisms. Food Funct. 2019;10(12):8208-8217.
[60] 何捷.二十二碳六烯酸纳米结构脂质载体调控巨噬细胞极化治疗牙周炎的研究[D].长春:吉林大学,2024.
[61] 刘览,邵栋,殷晓红,等.金水缓纤方抑制JAK/STAT和ERK信号阻抑巨噬细胞M2极化改善肺纤维化的机制[J].中华中医药杂志,2023,38(5):1967-1973.
[62] 钱佳燕.复方五凤草液调控M1/M2巨噬细胞极化干预结核性溃疡的临床研究[D].南京:南京中医药大学,2020.
[63] ZHOU F, MEI J, HAN X, et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta Pharm Sin B. 2019;9(5):973-985.
[64] YUNNA C, MENGRU H, LEI W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090.
[65] 周宇翔,沈烈军,万诗雨,等.骨免疫调节特性骨组织工程支架在修复骨缺损中的应用和发展[J].中国组织工程研究,2024,28(29):4734.
[66] 张照欣,王新革,葛泽阳,等.钛种植体愈合期牙龈炎性浸润及巨噬细胞极化的研究[J].实用口腔医学杂志,2022,38(3):294-299.
[67] CARCUAC O, BERGLUNDH T. Composition of human peri-implantitis and periodontitis lesions. J Dent Res. 2014;93(11):1083-1088.
[68] 张照欣.巨噬细胞在种植体软组织界面分布特征及介导病理性骨吸收作用的实验研究[D].西安:中国人民解放军空军军医大学,2022.
[69] ALBREKTSSON T, TENGVALL P, AMENGUAL L, et al. Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Front Immunol. 2023;13:1056914.
[70] 席向东,陈德胜,杨超,等.MMP-9、TNF-α、IL-1 在无菌性松动界膜组织中的表达及相关性研究[J].生物骨科材料与临床研究,2021,18(1):5-8,12.
[71] CHANG Y, JIANG K, ZHANG L, et al. Application of next-generation sequencing technology in the detection of pathogenic bacteria of the periprosthetic joint infection after arthroplasty. Int Wound J. 2023;20(6):2121-2128.
[72] 王健,崔玉宝,李杭,等.金属磨损颗粒诱导假体无菌性松动的研究进展[J].东南大学学报(医学版),2024,43(3):483-486.
[73] SHI Y, ZHANG Q, BI H, et al. Decoding the multicellular ecosystem of vena caval tumor thrombus in clear cell renal cell carcinoma by single-cell RNA sequencing. Genome Biol. 2022;23(1):87.
[74] LIN P, JI HH, LI YJ, et al. Macrophage plasticity and atherosclerosis therapy. Front Mol Biosci. 2021;8:679797. |