中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (5): 1247-1259.doi: 10.12307/2026.011
• 组织构建综述 tissue construction review • 上一篇 下一篇
刘新月,李春年,李一卓,徐世芳
收稿日期:
2024-12-03
接受日期:
2025-01-24
出版日期:
2026-02-18
发布日期:
2025-06-26
通讯作者:
李春年,硕士,主任医师,河北医科大学口腔医学院•口腔医院(河北省口腔医学重点实验室),河北省石家庄市 050017
作者简介:
刘新月,女,1998年生,河北省张家口市人,汉族,硕士,医师,主要从事口腔内科牙体牙髓学方面的研究。
基金资助:
Liu Xinyue, Li Chunnian, Li Yizhuo, Xu Shifang
Received:
2024-12-03
Accepted:
2025-01-24
Online:
2026-02-18
Published:
2025-06-26
Contact:
Li Chunnian, Master, Chief physician, School of Stomatology and Hospital of Stomatology, Hebei Medical University (Key Laboratory of Stomatology of Hebei Province), Shijiazhuang 050017, Hebei Province, China
About author:
Liu Xinyue, Master, Physician, School of Stomatology and Hospital of Stomatology, Hebei Medical University (Key Laboratory of Stomatology of Hebei Province), Shijiazhuang 050017, Hebei Province, China
Supported by:
摘要:
文题释义:
牙槽骨缺损:牙槽骨指上颌骨下缘、下颌骨上缘镶嵌牙根的部位,牙槽骨缺损指该部位出现了组织缺失,一般由于牙周病、根尖周病、口腔颌面创伤、肿瘤等造成,会导致畸形、口腔功能障碍,严重影响患者的生活质量。
再生修复:是指骨组织在受到损伤后,通过一系列生物学过程实现自我修复和再生的能力。通常情况下,可以通过骨移植、引导性骨组织再生术、生长因子治疗、药物治疗、物理治疗、干细胞疗法等方式使牙槽骨再生。
背景:对于牙槽骨缺损的再生修复,研究一种促进牙槽骨再生且具有良好性能的材料,对于治疗牙槽骨缺损有着重要意义。
目的:汇总近5年有关牙槽骨缺损再生修复的研究,对新材料和新药物进行分类介绍,从而掌握相关领域的最新进展。
方法:以“Alveolar bone,alveolar bone defect,alveolar bone regeneration, mechanism,biomaterials,nanoscaffolds,hydrogels,medications,anti-inflammatory drugs, simvastatin,metformin,traditional Chinese medicine,growth factor,stem cell”为英文关键词在PubMed数据库检索,以“牙槽骨,牙槽骨缺损,牙槽骨再生,机制,生物材料,纳米支架,水凝胶,药物治疗,抗炎药物,辛伐他汀,二甲双胍,中药,生长因子,干细胞”为中文关键词在中国知网进行检索,通过筛选最终共得到117篇文献进行综述分析。
结果与结论:生物材料的应用既为牙槽骨再生提供支架结构,也可以作为骨替代物修复骨缺损;西药和中药的局部与全身应用可以控制炎症,促进骨再生;负载有各种生长因子的材料具有成骨作用,可以促进牙槽骨缺损的修复;干细胞组织工程的种子细胞具有成骨、成纤维的作用,可以分化为成骨细胞,生成新生骨质。近几年的研究热衷于对以上几种方法的结合使用,研发出新的具有良好生物相容性、可缓慢释放功能药物或材料,来促进牙槽骨缺损的再生修复。
https://orcid.org/0009-0003-8501-5120 (刘新月)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
刘新月, 李春年, 李一卓, 徐世芳. 口腔牙槽骨缺损的再生修复[J]. 中国组织工程研究, 2026, 30(5): 1247-1259.
Liu Xinyue, Li Chunnian, Li Yizhuo, Xu Shifang. Regeneration and repair of oral alveolar bone defects[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1247-1259.
[1] AL MD, GHOSH YA, XIN H, et al. Hydrogel: A Potential Material for Bone Tissue Engineering Repairing the Segmental Mandibular Defect. Polymers (Basel). 2022;14(19):4186. [2] HOLLY D, KLEIN M, MAZREKU M, et al. Stem Cells and Their Derivatives-Implications for Alveolar Bone Regeneration: A Comprehensive Review. Int J Mol Sci. 2021;22(21):11746. [3] RANTA R, YLIPAAVALNIEMI P, ALTONEN M, et al. Transplantation of free tibial periosteal graft on alveolar bone defect in adult rabbit. Int J Oral Surg. 1981;10(2):122-127. [4] SUWA F, YANG L, OHTA Y, et al. Ability of hydroxyapatite-bone morphogenetic (corrected from morphologenetic) protein (BMP) complex to induce dentin formation in dogs. Okajimas Folia Anat Jpn. 1993;70(5):195-201. [5] YOSHIKAWA M, TODA T. Reconstruction of alveolar bone defect by calcium phosphate compounds. J Biomed Mater Res. 2000; 53(4):430-437. [6] ZHAO S, WANG Q, CHENG Z. [The induction of transforming growth factor-beta 1 in reparative process of mouse experimental alveolar bone defect]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2000;35(4):292-293. [7] NAKAHARA T, NAKAMURA T, KOBAYASHI E, et al. Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng. 2003;9(1):153-162. [8] WANG M, WENG YL, HU XJ, et al. [Repair of alveolar bone defect with tissue engineered bone: an experimental study of dogs]. Zhonghua Yi Xue Za Zhi. 2003;83(15):1339-1344. [9] KAWATA T, YUKI M, MIYAMOTO Y, et al. Guided bone regeneration to repair an alveolar bone defect in a girl whose cleft lip and palate had been repaired. Br J Oral Maxillofac Surg. 2005;43(5):420-422. [10] KIM SK, CHO TH, HAN JJ, et al. Comparative study of BMP-2 alone and combined with VEGF carried by hydrogel for maxillary alveolar bone regeneration. Tissue Eng Regen Med. 2016;13(2):171-181. [11] DUARTE C, YAMADA C, NGALA B, et al. Effects of IL-34 and anti-IL-34 neutralizing mAb on alveolar bone loss in a ligature-induced model of periodontitis. Mol Oral Microbiol. 2024;39(3):93-102. [12] LI L, LI J, LI S, et al. IL-37 alleviates alveolar bone resorption and inflammatory response through the NF-kappaB/NLRP3 signaling pathway in male mice with periodontitis. Arch Oral Biol. 2023; 147:105629. [13] APOLINARIO VG, APARECIDA RA, FIGUEIREDO CK, et al. Specific inhibition of IL-6 receptor attenuates inflammatory bone loss in experimental periodontitis. J Periodontol. 2021;92(10):1460-1469. [14] CAFFERATA EA, TERRAZA-AGUIRRE C, BARRERA R, et al. Interleukin-35 inhibits alveolar bone resorption by modulating the Th17/Treg imbalance during periodontitis. J Clin Periodontol. 2020;47(6):676-688. [15] WANG Z, ZHOU F, FENG X, et al. FoxO1/NLRP3 Inflammasome Promotes Age-Related Alveolar Bone Resorption. J Dent Res. 2023;102(8):919-928. [16] QI X, BIE M, JIANG R, et al. HIF-1alpha regulates osteoclastogenesis and alveolar bone resorption in periodontitis via ANGPTL4. Arch Oral Biol. 2023;153:105736. [17] ARCE M, RODRIGUEZ-PENA M, ESPINOZA-ARRUE J, et al. Increased STAT3 Activation in Periodontitis Drives Inflammatory Bone Loss. J Dent Res. 2023;102(12):1366-1375. [18] ZHANG D, SUN XC, WANG H, et al. Repair of alveolar cleft bone defects in rabbits by active bone particles containing modified rhBMP-2. Regen Med. 2021;16(9):833-846. [19] SANTOS M, CHAVES IM, QUEIROZ-JUNIOR CM, et al. SOCS2 regulates alveolar bone loss in Aggregatibacter actinomycetemcomitans-induced periodontal disease. Inflamm Res. 2023; 72(4):859-873. [20] JAKOVLJEVIC A, NIKOLIC N, PATERNO HL, et al. Involvement of the Notch signaling system in alveolar bone resorption. Jpn Dent Sci Rev. 2023;59:38-47. [21] LEE MJ, RYU HH, HWANG JW, et al. Sirt6 Activation Ameliorates Inflammatory Bone Loss in Ligature-Induced Periodontitis in Mice. Int J Mol Sci. 2023;24(13):10714. [22] USUI M, ONIZUKA S, SATO T, et al. Mechanism of alveolar bone destruction in periodontitis - Periodontal bacteria and inflammation. Jpn Dent Sci Rev. 2021;57: 201-208. [23] LI Y, LING J, JIANG Q. Inflammasomes in Alveolar Bone Loss. Front Immunol. 2021;12:691013. [24] CHEN Y, YANG Q, LV C, et al. NLRP3 regulates alveolar bone loss in ligature-induced periodontitis by promoting osteoclastic differentiation. Cell Prolif. 2021;54(2):e12973. [25] JIA X, YANG R, LI J, et al. Gut-Bone Axis: A Non-Negligible Contributor to Periodontitis. Front Cell Infect Microbiol. 2021;11:752708. [26] HAN N, LI X, DU J, et al. The impacts of oral and gut microbiota on alveolar bone loss in periodontitis. J Periodontal Res. 2023;58(6): 1139-1147. [27] YUAN Y, ZHANG H, HUANG H. microRNAs in inflammatory alveolar bone defect: A review. J Periodontal Res. 2021;56(2): 219-225. [28] REMY MT, DING Q, KRONGBARAMEE T, et al. Plasmid encoding miRNA-200c delivered by CaCO(3)-based nanoparticles enhances rat alveolar bone formation. Nanomedicine (Lond). 2022;17(19):1339-1354. [29] ROBINSON JL, JOHNSON PM, KISTER K, et al. Estrogen signaling impacts temporomandibular joint and periodontal disease pathology. Odontology. 2020; 108(2):153-165. [30] SETIAWAN M, JAGER A, DARATSIANOS N, et al. Impact of the endocannabinoid system on murine cranial and alveolar bone phenotype. Ann Anat. 2020;230: 151516. [31] LI N, WANG J, FENG G, et al. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater. 2024;11:rbae78. [32] FUNDA G, TASCHIERI S, BRUNO GA, et al. Nanotechnology Scaffolds for Alveolar Bone Regeneration. Materials (Basel). 2020;13(1): 201. [33] QIAO D, CHENG S, SONG S, et al. Polarized M2 macrophages induced by glycosylated nano-hydroxyapatites activate bone regeneration in periodontitis therapy. J Clin Periodontol. 2024;51(8):1054-1065. [34] CHEN X, HUANG N, WANG D, et al. Sulfated Chitosan-Modified CuS Nanocluster: A Versatile Nanoformulation for Simultaneous Antibacterial and Bone Regenerative Therapy in Periodontitis. ACS Nano. 2024; 18(22):14312-14326. [35] HE Z, LIU S, LI Z, et al. Coaxial TP/APR electrospun nanofibers for programmed controlling inflammation and promoting bone regeneration in periodontitis-related alveolar bone defect models. Mater Today Bio. 2022;16:100438. [36] LEI L, WEI Y, WANG Z, et al. Core-Shell Bioactive Ceramic Robocasting: Tuning Component Distribution Beneficial for Highly Efficient Alveolar Bone Regeneration and Repair. ACS Biomater Sci Eng. 2020;6(4):2376-2387. [37] HE Z, LV JC, ZHENG ZL, et al. Hierarchically structured nanofibrous scaffolds spatiotemporally mediate the osteoimmune micro-environment and promote osteogenesis for periodontitis-related alveolar bone regeneration. Acta Biomater. 2024;189:323-336. [38] LIU Y, ZHAO Y, ZHU W, et al. Comprehensive reparative effects of bacteriostatic poly(L-lactide-co-glycolide)/poly(L-lactide-co-epsilon-caprolactone) electrospinning membrane on alveolar bone defects in progressive periodontitis. J Biomed Mater Res B Appl Biomater. 2023;111(3):513-525. [39] WANG L, WANG F, AYISEN S, et al. Enhancing the mechanical properties and surface morphology of individualized Ti-mesh fabricated through additive manufacturing for the treatment of alveolar bone defects. Front Bioeng Biotechnol. 2023;11:1284359. [40] YANG R, CHEN J, WANG D, et al. Self-Assembling Peptide RADA16 Nanofiber Scaffold Hydrogel-Wrapped Concentrated Growth Factors in Osteogenesis of MC3T3. J Funct Biomater. 2023;14(5):260. [41] DE ALMEIDA CD, SARTORETTO SC, ALVES A, et al. Does Melatonin Associated with Nanostructured Calcium Phosphate Improve Alveolar Bone Repair? Medicina (Kaunas). 2022;58(12):1720. [42] 周露露,滕念,高甜甜,等.香芹酚水凝胶对牙周炎大鼠牙槽骨保护作用研究[J].华西口腔医学杂志,2024,42(5):593-608. [43] PENG G, LI W, PENG L, et al. Multifunctional DNA-Based Hydrogel Promotes Diabetic Alveolar Bone Defect Reconstruction. Small. 2024;20(10):e2305594. [44] LI W, WANG C, WANG Z, et al. Physically Cross-Linked DNA Hydrogel-Based Sustained Cytokine Delivery for In Situ Diabetic Alveolar Bone Rebuilding. ACS Appl Mater Interfaces. 2022;14(22):25173-25182. [45] PENG L, LI W, PENG G, et al. Antibacterial and DNA-Based Hydrogels In Situ Block TNF-alpha to Promote Diabetic Alveolar Bone Rebuilding. Macromol Rapid Commun. 2024;45(5):e2300559. [46] LIU Y, LI T, SUN M, et al. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater. 2022;146:37-48. [47] XU X, LI X, QIU S, et al. Concentration Selection of Biofriendly Enzyme-Modified Gelatin Hydrogels for Periodontal Bone Regeneration. ACS Biomater Sci Eng. 2023; 9(7):4341-4355. [48] OGASAWARA K, TO M, LIU YH, et al. Application of deproteinized bovine bone mineral as proangiogenic scaffold for alveolar bone formation in beagle dogs. Microscopy (Oxf). 2021;70(4):382-387. [49] SHEN H, ZHUANG Y, ZHANG C, et al. Osteoclast-Driven Osteogenesis, Bone Remodeling and Biomaterial Resorption: A New Profile of BMP2-CPC-Induced Alveolar Bone Regeneration. Int J Mol Sci. 2022;23(20):12204. [50] GAO X, ZHOU J, BIAN Y, et al. Simvastatin intervention mitigates hypercholesterolemia-induced alveolar bone resorption in rats. Exp Ther Med. 2021;21(6):628. [51] CHEN N, REN R, WEI X, et al. Thermoresponsive Hydrogel-Based Local Delivery of Simvastatin for the Treatment of Periodontitis. Mol Pharm. 2021;18(5):1992-2003. [52] LV Z, GUO Y. Metformin and Its Benefits for Various Diseases. Front Endocrinol (Lausanne). 2020;11:191. [53] LIU K, AHEMAITI A, TUERNISAGULI K, et al. [Effect of metformin combined with DPP-4 inhibitor on alveolar bone density in patients with type 2 diabetes mellitus and chronic periodontitis]. Shanghai Kou Qiang Yi Xue. 2023;32(4):410-416. [54] FANG CH, SUN CK, LIN YW, et al. Metformin-Incorporated Gelatin/Nano-Hydroxyapatite Scaffolds Promotes Bone Regeneration in Critical Size Rat Alveolar Bone Defect Model. Int J Mol Sci. 2022;23(1):558. [55] LEE Y, LEE JE, LEE AR, et al. Nifedipine attenuates alveolar bone destruction and improves trabecular microarchitectures in mice with experimental periodontitis. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(12):3627-3633. [56] ZHANG Z, SONG J, KWON SH, et al. Pirfenidone Inhibits Alveolar Bone Loss in Ligature-Induced Periodontitis by Suppressing the NF-kappaB Signaling Pathway in Mice. Int J Mol Sci. 2023; 24(10):8682. [57] TANG G, MA H, LIU S, et al. Pyrroloquinoline quinone inhibits ligature-induced alveolar bone loss through regulation of redox balance and cell senescence. Am J Transl Res. 2022;14(1):582-593. [58] MIYAZAWA K, ASANO Y, TABUCHI M, et al. Local administration of ReveromycinA ointment suppressed alveolar bone loss in mice. J Pharmacol Sci. 2021;147(1):40-47. [59] FENG C, LIU Y, ZHANG BY, et al. Rapamycin Inhibits Osteoclastogenesis and Prevents LPS-Induced Alveolar Bone Loss by Oxidative Stress Suppression. ACS Omega. 2023;8(23):20739-20754. [60] KIM JA, LIM S, KIM GJ, et al. Napyradiomycin B4 Suppresses RANKL-Induced Osteoclastogenesis and Prevents Alveolar Bone Destruction in Experimental Periodontitis. ACS Pharmacol Transl Sci. 2024; 7(4):1023-1031. [61] XIN L, ZHOU F, ZHANG C, et al. Four-Octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system. Int J Oral Sci. 2022;14(1):27. [62] KARATAS O, GEVREK F. 3,4,5-Trihydroxybenzoic Acid Attenuates Ligature-Induced Periodontal Disease in Wistar Rats. Antiinflamm Antiallergy Agents Med Chem. 2021;20(1):51-60. [63] SHALEHIN N, HOSOYA A, TAKEBE H, et al. Boric acid inhibits alveolar bone loss in rat experimental periodontitis through diminished bone resorption and enhanced osteoblast formation. J Dent Sci. 2020;15(4):437-444. [64] TIAN P, ZHAO L, KIM J, et al. Dual stimulus responsive borosilicate glass (BSG) scaffolds promote diabetic alveolar bone defectsrepair by modulating macrophage phenotype. Bioact Mater. 2023;26:231-248. [65] ZHANG S, NIU Y, YANG Z, et al. Biochanin A alleviates gingival inflammation and alveolar bone loss in rats with experimental periodontitis. Exp Ther Med. 2020;20(6):251. [66] BHAT SR, SHWETHA R, BOLOOR VA, et al. Bone Sparing Effects of Bisphosphonates in Cyclosporine-induced Alveolar Bone Loss: An Animal Study. J Pharm Bioallied Sci. 2020;12(Suppl 1):S560-S563. [67] 霍花,刘官娟,宋娜,等.唑来膦酸干预去势大鼠牙槽骨骨代谢及核苷酸结合寡聚化结构域样受体蛋白3炎症小体表达的变化[J].中国组织工程研究,2022, 26(17):2660-2666. [68] NAGASAKI A, NAGASAKI K, CHU EY, et al. Ablation of Pyrophosphate Regulators Promotes Periodontal Regeneration. J Dent Res. 2021;100(6):639-647. [69] GU JT, JIAO K, LI J, et al. Polyphosphate-crosslinked collagen scaffolds for hemostasis and alveolar bone regeneration after tooth extraction. Bioact Mater. 2022;15:68-81. [70] AGNIHOTRI R, GAUR S. Applications of Teriparatide for Alveolar Bone Regeneration: A Systematic Review. J Int Soc Prev Community Dent. 2021;11(6):639-643. [71] BRANCO-DE-ALMEIDA LS, FRANCO G, CASTRO ML, et al. Protective effects of desipramine on alveolar bone in experimental periodontitis. J Periodontol. 2020;91(12):1694-1703. [72] CHEN H, LIU N, HU S, et al. Yeast beta-glucan-based nanoparticles loading methotrexate promotes osteogenesis of hDPSCs and periodontal bone regeneration under the inflammatory microenvironment. Carbohydr Polym. 2024;342:122401. [73] IHN HJ, KIM YS, LIM S, et al. PF-3845, a Fatty Acid Amide Hydrolase Inhibitor, Directly Suppresses Osteoclastogenesis through ERK and NF-kappaB Pathways In Vitro and Alveolar Bone Loss In Vivo. Int J Mol Sci. 2021;22(4):1915. [74] LUCATELI RL, SILVA P, SALVADOR SL, et al. Probiotics enhance alveolar bone microarchitecture, intestinal morphology and estradiol levels in osteoporotic animals. J Periodontal Res. 2024;59(4):758-770. [75] GONG A, LIU Y, XU F, et al. Role of 1,25-dihydroxyvitamin D in alleviating alveolar bone loss and gingival inflammation in ligature-induced periodontitis. Am J Transl Res. 2022;14(5): 3079-3091. [76] DING Y, WANG Y, LI J, et al. Microemulsion-thermosensitive gel composites as in situ-forming drug reservoir for periodontitis tissue repair through alveolar bone and collagen regeneration strategy. Pharm Dev Technol. 2023;28(1):30-39. [77] GONCALVES VP, MUSSKOPF ML, RIVERA-CONCEPCION A, et al. Systemic Dietary Hesperidin Modulation of Osteoclastogenesis, Bone Homeostasis and Periodontal Disease in Mice. Int J Mol Sci. 2022;23(13):7100. [78] XU H, ZHOU S, QU R, et al. Icariin prevents oestrogen deficiency-induced alveolar bone loss through promoting osteogenesis via STAT3. Cell Prolif. 2020;53(2):e12743. [79] 山玲莉,王振宇,高永红.栀子苷对牙周病大鼠GSK3β/Nrf2通路及牙槽骨丢失的影响[J].中国老年学杂志,2023,43(7): 1711-1715. [80] TASKAN MM, GEVREK F. Quercetin Decreased Alveolar Bone Loss and Apoptosis in Experimentally Induced Periodontitis Model in Wistar Rats. Antiinflamm Antiallergy Agents Med Chem. 2020;19(4):436-448. [81] YANG SY, HU Y, ZHAO R, et al. Quercetin-loaded mesoporous nano-delivery system remodels osteoimmune microenvironment to regenerate alveolar bone in periodontitis via the miR-21a-5p/PDCD4/NF-kappaB pathway. J Nanobiotechnology. 2024; 22(1):94. [82] LI J, LI M, ZHANG C, et al. Active targeting microemulsion-based thermosensitive hydrogel against periodontitis by reconstructing Th17/Treg homeostasis via regulating ROS-macrophages polarization cascade. Int J Pharm. 2024;659:124263. [83] 郭晓雨,李淑娟,梁向阳,等.槲皮素脂质体对糖尿病牙周炎大鼠牙周组织的作用及血清AGEs的影响[J].口腔医学研究, 2021,37(7):628-631. [84] LI T, DU Y, YAO H, et al. Isobavachin attenuates osteoclastogenesis and periodontitis-induced bone loss by inhibiting cellular iron accumulation and mitochondrial biogenesis. Biochem Pharmacol. 2024;224: 116202. [85] 代喆颖,郭怡,刘阳,等.大豆异黄酮抑制Slit2/MAPK信号通路对牙周炎大鼠牙槽骨吸收和炎症反应的影响[J].中国免疫学杂志,2024,40(6):1131-1136. [86] SEOK J, KIM MO, KIM SH, et al. Flavonoid gossypetin protects alveolar bone and limits inflammation in ligature-induced periodontitis in mice. J Periodontol. 2024. doi: 10.1002/JPER.23-0541. [87] KARIU T, HAMADA N, LAKSHMYYA K. Luteolin inhibits Porphyromonas gingivalis growth and alleviates alveolar bone destruction in experimental murine periodontitis. Biosci Biotechnol Biochem. 2023;88(1):37-43. [88] 万妮,莫礼文,詹乐,等.葛根素对实验性大鼠牙周炎炎症反应和骨吸收的影响[J].海南医学院学报,2023,29(8):575-580. [89] MING Y, HE X, ZHAO Z, et al. Nanocarrier-Assisted Delivery of Berberine Promotes Diabetic Alveolar Bone Regeneration by Scavenging ROS and Improving Mitochondrial Dysfunction. Int J Nanomedicine. 2024;19:10263-10282. [90] QIN Z, HAN Y, DU Y, et al. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells promote alveolar bone regeneration by regulating macrophage polarization. Sci China Life Sci. 2024;67(5):1010-1026. [91] SUN M, JI Y, ZHOU S, et al. Ginsenoside Rb3 inhibits osteoclastogenesis via ERK/NF-kappaB signaling pathway in vitro and in vivo. Oral Dis. 2023;29(8):3460-3471. [92] KIZILDAGA A, ALPANB AL, OZDEDEC M, et al. Therapeutic effects of diosgenin on alveolar bone loss and apoptosis in diabetic rats with experimental periodontitis. Iran J Basic Med Sci. 2023;26(7):785-790. [93] LIU C, CHEN Y, BAI H, et al. Characterization and application of in situ curcumin/ZNP hydrogels for periodontitis treatment. BMC Oral Health. 2024;24(1):395. [94] SHA AM, GARIB BT, AZEEZ SH, et al. Effects of curcumin gel on osteoclastogenic bone markers in experimental periodontitis and alveolar bone loss in wistar rats. J Dent Sci. 2021;16(3):905-914. [95] KIM TY, KIM EN, JEONG GS. Therapeutic Effects of Hinokitiol through Regulating the SIRT1/NOX4 against Ligature-Induced Experimental Periodontitis. Antioxidants (Basel). 2024;13(5): 550. [96] LIU Z, LI Q, WANG X, et al. Proanthocyanidin enhances the endogenous regeneration of alveolar bone by elevating the autophagy of PDLSCs. J Periodontal Res. 2023;58(6):1300-1314. [97] LIU M, LIU Y, LUO F. The role and mechanism of platelet-rich fibrin in alveolar bone regeneration. Biomed Pharmacother. 2023; 168:115795. [98] FAN Y, CUI C, ROSEN CJ, et al. Klotho in Osx(+)-mesenchymal progenitors exerts pro-osteogenic and anti-inflammatory effects during mandibular alveolar bone formation and repair. Signal Transduct Target Ther. 2022; 7(1):155. [99] SUGII H, ALBOUGHA MS, ADACHI O, et al. Activin A Promotes Osteoblastic Differentiation of Human Preosteoblasts through the ALK1-Smad1/5/9 Pathway. Int J Mol Sci. 2021; 22(24):13491. [100] ZHANG X, XIONG Q, LIN W, et al. Schwann Cells Contribute to Alveolar Bone Regeneration by Promoting Cell Proliferation. J Bone Miner Res. 2023;38(1):119-130. [101] PURWANINGRUM M, GIACHELLI CM, OSATHANON T, et al. Dissecting specific Wnt components governing osteogenic differentiation potential by human periodontal ligament stem cells through interleukin-6. Sci Rep. 2023;13(1):9055. [102] WANG W, YUAN C, GENG T, et al. EphrinB2 overexpression enhances osteogenic differentiation of dental pulp stem cells partially through ephrinB2-mediated reverse signaling. Stem Cell Res Ther. 2020; 11(1):40. [103] WANG W, ZHU Y, LI J, et al. Bioprinting EphrinB2-Modified Dental Pulp Stem Cells with Enhanced Osteogenic Capacity for Alveolar Bone Engineering. Tissue Eng Part A. 2023;29(7-8):244-255. [104] ZAKARIA MF, SONODA S, KATO H, et al. Erythropoietin receptor signal is crucial for periodontal ligament stem cell-based tissue reconstruction in periodontal disease. Sci Rep. 2024;14(1):6719. [105] LEE J, MIN HK, PARK CY, et al. A vitronectin-derived peptide prevents and restores alveolar bone loss by modulating bone re-modelling and expression of RANKL and IL-17A. J Clin Periodontol. 2022;49(8):799-813. [106] LIU Y, ZHANG Z, MA C, et al. Transplanted MSCs promote alveolar bone repair via hypoxia-induced extracellular vesicle secretion. Oral Dis. 2024;30(8):5221-5231. [107] SEDIK AS, KAWANA KY, KOURA AS, et al. Biological effect of bone marrow mesenchymal stem cell- derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis. BMC Musculoskelet Disord. 2023;24(1):205. [108] PUTRI IL, FATCHIYAH, PRAMONO C, et al. Alveolar Repair Using Cancellous Bone and Beta Tricalcium Phosphate Seeded With Adipose-Derived Stem Cell. Cleft Palate Craniofac J. 2024;61(4):555-565. [109] QU G, LI Y, CHEN L, et al. Comparison of Osteogenic Differentiation Potential of Human Dental-Derived Stem Cells Isolated from Dental Pulp, Periodontal Ligament, Dental Follicle, and Alveolar Bone. Stem Cells Int. 2021;2021:6631905. [110] WU Y, JING H, LI Y, et al. NOR1 promotes the osteoblastic differentiation of human periodontal ligament stem cells via TGF-beta signaling pathway. Cell Mol Life Sci. 2024;81(1):338. [111] ZHAO Y, GONG Y, LIU X, et al. The Experimental Study of Periodontal Ligament Stem Cells Derived Exosomes with Hydrogel Accelerating Bone Regeneration on Alveolar Bone Defect. Pharmaceutics. 2022;14(10):2189. [112] ZONG C, VAN HOLM W, BRONCKAERS A, et al. Biomimetic Periodontal Ligament Transplantation Activated by Gold Nanoparticles Protects Alveolar Bone. Adv Healthc Mater. 2023;12(15):e2300328. [113] SHI X, MAO J, LIU Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl Med. 2020;9(4): 445-464. [114] ZHAO J, ZHOU YH, ZHAO YQ, et al. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther. 2023;14(1):39. [115] LIU X, LV S, KAN W, et al. Human alveolar bone-derived mesenchymal stem cell cultivation on a 3D-printed PDLLA scaffold for bone formation. Br J Oral Maxillofac Surg. 2023;61(8):527-533. [116] TANG H, BI F, CHEN G, et al. 3D-bioprinted Recombination Structure of Hertwig’s Epithelial Root Sheath Cells and Dental Papilla Cells for Alveolar Bone Regeneration. Int J Bioprint. 2022;8(3):512. [117] YI G, ZHANG S, MA Y, et al. Matrix vesicles from dental follicle cells improve alveolar bone regeneration via activation of the PLC/PKC/MAPK pathway. Stem Cell Res Ther. 2022;13(1):41. |
[1] | 李郝静, 王 新, 宋成林, 张胜男, 陈云昕. 上斜方肌处体外冲击波与运动控制训练治疗慢性非特异性颈痛[J]. 中国组织工程研究, 2026, 30(5): 1162-1170. |
[2] | 刘 煜, 雷森林, 周锦涛, 刘 辉, 李先辉. 有氧和抗阻运动改善肥胖相关认知障碍的作用机制[J]. 中国组织工程研究, 2026, 30(5): 1171-1183. |
[3] | 王正业, 刘万林, 赵振群. miRNA在激素诱导股骨头坏死机制中的研究进展[J]. 中国组织工程研究, 2026, 30(5): 1207-1214. |
[4] | 部洋洋, 宁新丽, 赵 琛. 关节腔注射治疗颞下颌关节骨关节炎:不同药物与多种联合治疗方案[J]. 中国组织工程研究, 2026, 30(5): 1215-1224. |
[5] | 文 凡, 向 阳, 朱 欢, 庹艳芳, 李 锋. 运动干预改善2型糖尿病患者的微血管功能[J]. 中国组织工程研究, 2026, 30(5): 1225-1235. |
[6] | 冷晓轩, 赵玉欣, 刘西花. 不同神经调控刺激方式改善帕金森病患者非运动症状的网状Meta分析[J]. 中国组织工程研究, 2026, 30(5): 1282-1293. |
[7] | 温小龙, 翁锡全, 冯 瑶, 曹文燕, 刘玉倩, 王海涛, . 炎症对2型糖尿病患者血清抗菌多肽及铁代谢相关参数影响的Meta分析[J]. 中国组织工程研究, 2026, 30(5): 1294-1301. |
[8] | 杨泽雨, 支 亮, 王 佳, 张婧欹, 张清芳, 王玉龙, 龙建军. 高频重复经颅磁刺激研究热点宏观角度的可视化分析[J]. 中国组织工程研究, 2026, 30(5): 1320-1330. |
[9] | 杨志杰, 赵 瑞, 杨昊霖, 李小韵, 李扬博, 黄佳纯, 林燕平, 万 雷, 黄宏兴. 绝经后骨质疏松症:肌肉质量、握力、四肢骨骼肌质量指数的预测价值[J]. 中国组织工程研究, 2026, 30(5): 1073-1080. |
[10] | 彭团辉, 宋洪明, 杨 玲, 丁小歌, 蒙鹏骏. 长期耐力运动对自然衰老小鼠kl/FGF23轴及钙磷代谢的影响[J]. 中国组织工程研究, 2026, 30(5): 1089-1095. |
[11] | 阴勇成, 赵相瑞, 杨志杰, 李 政, 李 芳, 宁 斌. 过氧化物还原酶1在脊髓损伤后小胶质细胞炎症反应中的作用及机制[J]. 中国组织工程研究, 2026, 30(5): 1106-1113. |
[12] | 张久轩, 张晋楠, 眭肖凡, 裴霞霞, 魏建宏, 苏 强, 李 甜. 氨中毒对小鼠认知行为和海马神经元突触的影响[J]. 中国组织工程研究, 2026, 30(5): 1122-1128. |
[13] | 陈伊娴, 陈 晨, 卢立恒, 汤锦鹏, 于晓巍. 雷公藤甲素治疗骨关节炎的网络药理学分析与实验验证[J]. 中国组织工程研究, 2026, 30(4): 805-815. |
[14] | 鄢成波, 罗秋池, 樊佳兵, 顾叶婷, 邓 倩, 张军梅. 2型糖尿病对大鼠正畸牙移动与张力侧骨微结构参数的影响[J]. 中国组织工程研究, 2026, 30(4): 824-831. |
[15] | 李广政, 李 威, 张博淳, 丁浩秦, 周忠起, 李 刚, 梁学振. 绝经后女性肌肉减少症预测模型:中国健康与养老全国追踪调查数据库信息分析[J]. 中国组织工程研究, 2026, 30(4): 849-857. |
1.1.8 检索策略 以PubMed数据库检索策略为例,见图1。
1.3 文献质量评估及数据提取 纳入文献内容逻辑合理、方法科学严谨,观点应在符合当前主流研究结论前提下具有创新性。重点收集包含近年来该领域研究热点且引用量高的文献。排除内容质量低、观点陈旧、逻辑不严谨的文献。根据入选标准对初步检索文献筛选后,共纳入117篇文献,其中中文文献6篇、英文文献111篇,见图2。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||