[1] KUSUMBE AP, RAMASAMY SK, ADAMS RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323-328.
[2] CHEN JY, HENDRIKS M, CHATZIS A, et al. Bone vasculature and bone marrow vascular niches in health and disease. J Bone Miner Res. 2020;35(11):2103-2120.
[3] WANG J, GAO Y, CHENG P, et al. CD31hiEmcnhi vessels support new trabecular bone formation at the frontier growth area in the bone defect repair process. Sci Rep. 2017;7(1):4990.
[4] YIN H, HUANG J, CAO X, et al. Inhibition of src homology 2 domain-containing protein tyrosine phosphatase-2 facilitates CD31hiEndomucinhi blood vessel and bone formation in ovariectomized mice. Cell Physiol Biochem. 2018;50(3):1068-1083.
[5] YIN S, ZHANG W, ZHANG Z, et al. Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Adv Healthc Mater. 2019; 8(10):e1801433.
[6] DAI K, SHEN T, YU Y, et al. Generation of rhBMP-2-induced juvenile ossicles in aged mice. Biomaterials. 2020;258:120284.
[7] CHEN W, XIE G, LU Y, et al. An improved osseointegration of metal implants by pitavastatin loaded multilayer films with osteogenic and angiogenic properties. Biomaterials. 2022;280:121260.
[8] SUN J, JIAO K, NIU L, et al. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration. Biomaterials. 2017;113:203-216.
[9] HU J, ZHOU J, WU J, et al. Loganin ameliorates cartilage degeneration and osteoarthritis development in an osteoarthritis mouse model through inhibition of NF-κB activity and pyroptosis in chondrocytes. J Ethnopharmacol. 2020;247:112261.
[10] SHEN Z, CHEN Z, LI Z, et al. Total flavonoids of rhizoma drynariae enhances angiogenic-osteogenic coupling during distraction osteogenesis by promoting type H vessel formation through PDGF-BB/PDGFR-β instead of HIF-1α/VEGF axis. Front Pharmacol. 2020;11:503524.
[11] LI W, ZHOU X, JIANG T, et al. Positive effect of gushukang on type-H vessel and bone formation. Front Cell Dev Biol. 2020;8:265.
[12] LI H, LIAO L, Hu Y, et al. Identification of type H vessels in mice mandibular condyle. J Dent Res. 2021;100(9):983-992.
[13] YAN Z, WANG X, ZHOU Y, et al. H-type blood vessels participate in alveolar bone remodeling during murine tooth extraction healing. Oral Dis. 2020;26(5):998-1009.
[14] STEFANOWSKI J, LANG A, RAUCH A, et al. Spatial distribution of macrophages during callus formation and maturation reveals close crosstalk between macrophages and newly forming vessels. Front Immunol. 2019;10(2588):2588-2588.
[15] RAMASAMY SK, KUSUMBE AP, Schiller M, et al. Blood flow controls bone vascular function and osteogenesis. Nat Commun. 2016;7:13601-13601.
[16] ROMEO S, ALAWI K, RODRIGUES J, et al. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nat Cell Biol. 2019;21(4):430-441.
[17] PENG Y, WU S, LI Y, et al. Type H blood vessels in bone modeling and remodeling. Theranostics. 2020;10(1):426-436.
[18] FANG C, GUO JW, WANG YJ, et al. Diterbutyl phthalate attenuates osteoarthritis in ACLT mice via suppressing ERK/c-fos/NFATc1 pathway, and subsequently inhibiting subchondral osteoclast fusion. Acta Pharmacologica Sinica. 2022;43(5):1299-1310.
[19] LI Y, MU W, XU B, et al. Artesunate, an anti-malaria agent, attenuates experimental osteoarthritis by inhibiting bone resorption and CD31hiEmcnhi vessel formation in subchondral bone. Front Pharmacol. 2019;10:685.
[20] JI B, ZHANG Z, GUO W, et al. Isoliquiritigenin blunts osteoarthritis by inhibition of bone resorption and angiogenesis in subchondral bone. Sci Rep. 2018;8(1):1721.
[21] CUI Z, CRANE J, XIE H, et al. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis. 2016;75(9):1714-1721.
[22] DING L, GU S, ZHOU B, et al. Ginsenoside compound K enhances fracture healing via promoting osteogenesis and angiogenesis. Front Pharmacol. 2022;13: 855393-855393.
[23] WANG F, QIAN H, KONG L, et al. Accelerated bone regeneration by astragaloside iv through stimulating the coupling of osteogenesis and angiogenesis. Int J Biol Sci. 2021;17(7):1821-1836.
[24] YANG M, LI C, XIAO Y, et al. Ophiopogonin D promotes bone regeneration by stimulating CD31 EMCN vessel formation. Cell Prolif. 2020;53(3):e12784.
[25] LIN X, XU F, ZHANG KW, et al. Acacetin prevents bone loss by disrupting osteoclast formation and promoting type H vessel formation in ovariectomy-induced osteoporosis. Front Cell Dev Biol. 2022;10:796227.
[26] SONG C, CAO J, LEI Y, et al. Nuciferine prevents bone loss by disrupting multinucleated osteoclast formation and promoting type H vessel formation. FASEB J. 2020;34(3):4798-4811.
[27] HUANG J, YIN H, RAO S, et al. Harmine enhances type H vessel formation and prevents bone loss in ovariectomized mice. Theranostics. 2018;8(9):2435-2446.
[28] LIANG S, LING S, DU R, et al. The coupling of reduced type H vessels with unloading-induced bone loss and the protection role of Panax quinquefolium
saponin in the male mice. Bone. 2021;143:115712.
[29] GAO B, LIN X, JING H, et al. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging cell. 2018; 17(3):e12741.
[30] HOOTMAN J, HELMICK C. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum. 2006;54(1):226-229.
[31] LAWRENCE R, FELSON D, HELMICK C, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26-35.
[32] LE GRAVERAND-GASTINEAU M. Disease modifying osteoarthritis drugs: facing development challenges and choosing molecular targets. Current drug targets, 2010;11(5):528-535.
[33] HAWKER G, MIAN S, BEDNIS K, et al. Osteoarthritis year 2010 in review: non-pharmacologic therapy. Osteoarthritis Cartilage. 2011;19(4):366-374.
[34] BERENBAUM F. Osteoarthritis year 2010 in review: non-pharmacological therapies. Osteoarthritis Cartilage. 2011;19(4):361-365.
[35] HUANG J, ZHANG Y, DONG L, et al. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. J Ethnopharmacol. 2018;213: 280-301.
[36] WEI CC, YUE LF, YOU FT, et al. Panax notoginseng saponins alleviate osteoporosis and joint destruction in rabbits with antigen‑induced arthritis. Exp Ther Med. 2021;22(5):1302.
[37] 李世杰,马立琼,熊贤梅,等.三七总皂对富血小板血浆促进兔骨缺损愈合的影响[J].中国组织工程研究,2022,26(14):2155-2160.
[38] ZHANG Y, CAI W, HAN G, et al. Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K‑AKT‑mTOR pathway in osteoarthritic chondrocytes. Int J Mol Med. 2020;45(4):1225-1236.
[39] VERMA S, DAS P, KUMAR V L. Chemoprevention by artesunate in a preclinical model of colorectal cancer involves down regulation of β-catenin, suppression of angiogenesis, cellular proliferation and induction of apoptosis. Chem Biol Interact. 2017;278:84-91.
[40] ZHAO C, LIU Q, WANG K. Artesunate attenuates ACLT-induced osteoarthritis by suppressing osteoclastogenesis and aberrant angiogenesis. Biomed Pharmacother. 2017;96:410-416.
[41] FAZZALARI NL. Bone fracture and bone fracture repair. Osteoporos Int. 2011; 22(6):2003-2006.
[42] YANG XD, YANG YY, OUYANG DS, et al. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia. 2015;100:208-220.
[43] YANG N, LIU D, ZHANG X, et al. Effects of ginsenosides on bone remodelling for novel drug applications: a review. Chin Med. 2020;15(1):42.
[44] HUANG Q, GAO B, WANG L, et al. Ophiopogonin D: a new herbal agent against osteoporosis. Bone. 2015;74:18-28.
[45] YANG M, GUO Q, PENG H, et al. Krüppel-like factor 3 inhibition by mutated lncRNA Reg1cp results in human high bone mass syndrome. J Exp Med. 2019; 216(8):1944-1964.
[46] FANG Y, QINGNA L, ZHIHONG T, et al. Effect of total flavonoids from Drynaria rhizome on bone loss in ovariectomized rats. Trop J Pharm Res. 2019;18(6):1285-1289.
[47] ZHANG Y, JIANG J, SHEN H, et al. Total flavonoids from Rhizoma Drynariae (Gusuibu) for treating osteoporotic fractures: implication in clinical practice. Drug Des Devel Ther. 2017;11:1881-1890.
[48] MAO L, XIA L, CHANG J, et al. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater. 2017;61:217-232.
[49] SUN X, GUO Q, WEI W, et al. Current progress on microRNA-based gene delivery in the treatment of osteoporosis and osteoporotic fracture. Int J Endocrinol. 2019;2019:6782653.
[50] DING W, XU C, ZHANG Y, et al. Advances in the understanding of the role of type-H vessels in the pathogenesis of osteoporosis. Arch Osteoporos. 2020;15(1):5.
[51] XIE H, CUI Z, WANG L, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014;20(11):1270-1278.
[52] LI J, LIN X, ZHANG Y, et al. Preparative purification of bioactive compounds from flos chrysanthemi indici and evaluation of its antiosteoporosis effect. Evid Based Complement Alternat Med. 2016;2016:2587201.
[53] KIM SI, KIM YH, KANG BG, et al. Linarin and its aglycone acacetin abrogate actin ring formation and focal contact to bone matrix of bone-resorbing osteoclasts through inhibition of αvβ3 integrin and core-linked CD44. Phytomedicine. 2020; 79:153351.
[54] CHAI S, WAN L, WANG JL, et al. Gushukang inhibits osteocyte apoptosis and enhances BMP-2/Smads signaling pathway in ovariectomized rats. Phytomedicine. 2019;64:153063.
[55] GONG P, ZHANG Z, ZOU Y, et al. Tetramethylpyrazine attenuates blood-brain barrier disruption in ischemia/reperfusion injury through the JAK/STAT signaling pathway. Eur J Pharmacol. 2019;854:289-297.
[56] ZHANG X, DONG H, LIU Y, et al. Tetramethylpyrazine partially relieves hypoxia-caused damage of cardiomyocytes H9c2 by downregulation of miR-449a. J Cell Physiol. 2019. doi: 10.1002/jcp.28151.
[57] GABEL L, LIPHARDT A, HULME P, et al. Pre-flight exercise and bone metabolism predict unloading-induced bone loss due to spaceflight. Br J Sports Med. 2021; 56(4):196-203.
[58] WANG K, WANG Y, HU Z, et al. Bone-targeted lncRNA OGRU alleviates unloading-induced bone loss via miR-320-3p/Hoxa10 axis. Cell Death Dis. 2020;11(5):382.
[59] LI D, LIU M, TAO T Q, et al. Panax quinquefolium saponin attenuates cardiomyocyte apoptosis and opening of the mitochondrial permeability transition pore in a rat model of ischemia/reperfusion. Cell Physiol Biochem. 2014;34(4):1413-1426.
[60] CHEN H, HU B, LV X, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. N Nat Commun. 2019;10(1):181.
[61] LI L, LI Q, GUI L, et al. Sequential gastrodin release PU/n-HA composite scaffolds reprogram macrophages for improved osteogenesis and angiogenesis. Bioact Mater. 2022;19:24-37.
[62] ZHAO ZH, MA XL, ZHAO B, et al. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell Prolif. 2021; 54(7):e13043.
[63] KAO CT, CHIU YC, LEE AK, et al. The synergistic effects of Xu Duan combined Sr-contained calcium silicate/poly-ε-caprolactone scaffolds for the promotion of osteogenesis marker expression and the induction of bone regeneration in osteoporosis. Mater Sci Eng C Mater Biol Appl. 2021;119:111629.
[64] YAN Y, CHEN H, ZHANG H, et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials. 2019;190-191:97-110.
[65] 李高志,石菲,张舒,等.血管新生与骨形成耦联、骨骼疾病发生及治疗中H型血管的作用机制研究进展[J].山东医药,2021,61(3):91-94. |