[1] KRISHNAN Y, GRODZINSKY AJ. Cartilage diseases. Matrix Biol. 2018;71-72: 51-69.
[2] VACANTI CA, LANGER R, SCHLOO B, et al. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg. 1991;88(5):753-759.
[3] HOLLAND TA, BODDE EW, CUIJPERS VM, et al. Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis Cartilage. 2007;15(2):187-197.
[4] BASIRI A, FAROKHI M, AZAMI M, et al. A silk fibroin/decellularized extract of Wharton’s jelly hydrogel intended for cartilage tissue engineering. Prog Biomater. 2019;8(1):31-42
[5] GAO J, DENNIS JE, SOLCHAGA LA, et al. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 2001;7(4):363-371.
[6] CASTRO-VIÑUELAS R, SANJURJO-RODRÍGUEZ C, PIÑEIRO-RAMIL M, et al. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cell Mater. 2018;36:96-109.
[7] HAN Y, LI X, ZHANG Y, et al. Mesenchymal Stem Cells for Regenerative Medicine. Cells. 2019;8(8):886
[8] PAK J, LEE JH, KARTOLO WA, et al. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications. Biomed Res Int. 2016;2016:4702674.
[9] 严波,凌晓宇,童培建,等.脂肪干细胞对膝骨关节炎疼痛及软骨修复的影响[J].中国现代医学杂志,2020,30(3):1-6.
[10] ZHU Y, LIU T, SONG K, et al. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26(6):664-675.
[11] CHEN XY, CHEN JY, TONG XM, et al. Recent advances in the use of microcarriers for cell cultures and their ex vivo and in vivo applications.Biotechnol Lett. 2020;42(1):1-10.
[12] HONG Y, GAO C, XIE Y, et al. Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials. 2005;26(32):6305-6313.
[13] CHOI YS, PARK SN, SUH H. Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials. 2005;26(29): 5855-5863.
[14] VAN WEZEL AL. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature. 1967;216(5110):64-65.
[15] MARTIN Y, ELDARDIRI M, LAWRENCE-WATT DJ, et al. Microcarriers and their potential in tissue regeneration. Tissue Eng Part B Rev. 2011;17(1):71-80.
[16] SOLORIO LD, VIEREGGE EL, DHAMI CD, et al. High-density cell systems incorporating polymer microspheres as microenvironmental regulators in engineered cartilage tissues. Tissue Eng Part B Rev. 2013;19(3):209-220.
[17] SUN J, TAN H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials (Basel). 2013;6(4):1285-1309.
[18] AB-RAHIM S, SELVARATNAM L, RAGHAVENDRAN HR, et al. Chondrocyte-alginate constructs with or without TGF-β1 produces superior extracellular matrix expression than monolayer cultures. Mol Cell Biochem. 2013;376(1-2): 11-20.
[19] LEE KY, MOONEY DJ. Hydrogels for Tissue Engineering. Chem Rev. 2001; 101(7):1869-1879.
[20] XU M, WANG X, YAN Y, et al. An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials. 2010;31(14): 3868-3877.
[21] SHIMIZU M, MATSUMINE H, OSAKI H, et al. Adipose-derived stem cells and the stromal vascular fraction in polyglycolic acid-collagen nerve conduits promote rat facial nerve regeneration. Wound Repair Regen. 2018;26(6): 446-455.
[22] UYEN NTT, HAMID ZAA, TRAM NXT, et al. Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol. 2020;153: 1035-1046.
[23] BAJEK A, GURTOWSKA N, OLKOWSKA J, et al. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Arch Immunol Ther Exp (Warsz). 2016;64(6): 443-454.
[24] ASTORI G, VIGNATI F, BARDELLI S, et al. “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med. 2007;5:55.
[25] BARBA M, DI TARANTO G, LATTANZI W. Adipose-derived stem cell therapies for bone regeneration. Expert Opin Biol Ther. 2017;17(6):677-689.
[26] 谢盼盼,叶方,叶积飞.距骨软骨损伤的诊疗进展[J].中国骨伤,2018, 31(9):880-884.
[27] ARMIENTO AR, STODDART MJ, ALINI M, et al. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater. 2018;65: 1-20.
[28] CALDWELL KL, WANG J. Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthritis Cartilage. 2015; 23(3):351-362.
[29] ORTVED KF, NIXON AJ. Cell-based cartilage repair strategies in the horse. Vet J. 2016;208:1-12.
[30] MA Q, LIAO J, CAI X. Different Sources of Stem Cells and their Application in Cartilage Tissue Engineering. Curr Stem Cell Res Ther. 2018;13(7):568-575
[31] VERONESI F, MAGLIO M, TSCHON M, et al. Adipose-derived mesenchymal stem cells for cartilage tissue engineering: state-of-the-art in in vivo studies. J Biomed Mater Res A. 2014;102(7):2448-2466.
[32] BURKE J, HUNTER M, KOLHE R, et al. Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. ClinTransl Med. 2016;5(1):27.
[33] WANG Y, YUAN X, YU K, et al. Fabrication of nanofibrousmicrocarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials. 2018;171:118-132.
[34] ZAMANI M, PRABHAKARAN MP, RAMAKRISHNA S. Advances in drug delivery via electrospun and electrosprayednanomaterials. Int J Nanomedicine. 2013;8:2997-3017.
[35] HAO S, WANG Y, WANG B, et al. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release. Mater Sci Eng C Mater Biol Appl. 2014;39:113-119.
[36] JAYARAMAN P, GANDHIMATHI C, VENUGOPAL JR, et al. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv Drug Deliv Rev. 2015;94:77-95.
[37] MA Z, JI H, TENG Y, et al. Engineering and optimization of nano- and mesoporous silica fibers using sol-gel and electrospinning techniques for sorption of heavy metal ions. J Colloid Interface Sci. 2011;358(2):547-553.
[38] VENKATESAN J, BHATNAGAR I, MANIVASAGAN P, et al. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol. 2015;72:269-281.
[39] JAYASURIYA CT, CHEN Y, LIU W, et al.The influence of tissue microenvironment on stem cell-based cartilage repair. Ann N Y Acad Sci. 2016;1383(1):21-33.
[40] AXPE E, OYEN ML. Applications of Alginate-Based Bioinks in 3D Bioprinting. Int J Mol Sci. 2016;17(12):1976.
[41] RASTOGI P, KANDASUBRAMANIAN B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4): 042001.
[42] ECHAVE MC, HERNÁEZ-MOYA R, ITURRIAGA L, et al. Recent advances in gelatin-based therapeutics. Expert Opin Biol Ther. 2019;19(8):773-779.
[43] FU N, DONG T, MENG A, et al. Research progress of the types and preparation techniques of scaffold materials in cartilage tissue engineering. Curr Stem Cell Res Ther. 2018;13(7):583-590.
[44] OHTA S, NITTA N, WATANABE S, et al. Gelatin microspheres: correlation between embolic effect/degradability and cross-linkage/particle size. CardiovascInterventRadiol. 2013;36(4):1105-1111.
[45] DHAMECHA D, MOVSAS R, SANO U, et al. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. Int J Pharm. 2019;569:118627.
|