中国组织工程研究 ›› 2020, Vol. 24 ›› Issue (16): 2485-2492.doi: 10.3969/j.issn.2095-4344.2255

• 组织工程骨及软骨材料 tissue-engineered bone and cartilage materials • 上一篇    下一篇

3D打印聚乳酸树脂肱骨结合生物活性涂层促进成骨细胞的黏附及抗菌能力

张忠岩1,李玉波1,祁同宁2,常  韬2   

  1. 1承德医学院附属医院创伤骨科,河北省承德市  067000;2承德市医院创伤骨科,河北省承德市  067000
  • 收稿日期:2019-06-11 修回日期:2019-06-12 接受日期:2019-07-13 出版日期:2020-06-08 发布日期:2020-03-24
  • 通讯作者: 张忠岩,承德医学院附属医院创伤骨科,河北省承德市 067000
  • 作者简介:张忠岩,男,1983年生,河北省承德市人,汉族,硕士,主治医师,主要从事复杂肱骨骨折的治疗研究。
  • 基金资助:
    承德市科技计划自筹经费项目(201707A008)

Three-dimensional printed polylactic acid resin humerus combined with bioactive coating promotes osteoblast adhesion and increases antibacterial ability 

Zhang Zhongyan1, Li Yubo1, Qi Tongning2, Chang Tao2   

  1. 1Department of Traumatic Orthopedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China; 2Department of Traumatic Orthopedics, Chengde City Hospital, Chengde 067000, Hebei Province, China
  • Received:2019-06-11 Revised:2019-06-12 Accepted:2019-07-13 Online:2020-06-08 Published:2020-03-24
  • Contact: Zhang Zhongyan, Department of Traumatic Orthopedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
  • About author:Zhang Zhongyan, Master, Attending physician, Department of Traumatic Orthopedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
  • Supported by:
    the Self-Financing Project of Chengde Science and Technology Program, No. 201707A008

摘要:

文题释义:

聚乳酸:是以乳酸为主要原料聚合得到的聚合物,生产过程无污染,其产品也可以再生,在自然界中可以循环使用,是理想的绿色高分子材料,近年来被充分应用于医疗器械中,特别是在3D打印人体骨骼中得到广泛应用。

壳聚糖:又名脱乙酰甲壳素,由自然界广泛存在的几丁质经脱乙酰得到,属于天然高分子,该天然高分子具有良好的生物官能性和相容性、血液相容性、安全性、微生物降解性,作为生物复合材料被广泛应用于医药、食品、化工等领域。

α-β-GP温敏水凝胶:是一种N-异丙基丙烯酰胺和聚乙二醇的共聚物,在低温下为液态并随温度变化可逆,具备聚合材料的多种特征,被广泛用于医药生命科学领域。

背景:聚乳酸具有良好的生物韧性和生物相容性,但生物惰性限制了聚乳酸树脂种植体植入体内后与周围组织的相互作用。因此,提高聚乳酸树脂的生物活性、改善骨结合性能的研究逐渐成为生物材料的热点问题。

目的:观察聚乳酸树脂及其结合不同生物活性涂层对成骨细胞黏附、增殖及分化的影响,分析其抗菌能力。

方法:3D打印聚乳酸仿生肱骨试件,并在其表面分别制备壳聚糖-α-β-GP温敏水凝胶涂层与壳聚糖纳米颗粒涂层。将MC3T3-E1细胞分别接种于3D打印聚乳酸仿生肱骨(空白组)、含壳聚糖-α-β-GP温敏水凝胶涂层3D打印聚乳酸仿生肱骨(水凝胶组)与含壳聚糖纳米颗粒涂层3D打印聚乳酸仿生肱骨(纳米颗粒组)表面,观察细胞的黏附、增殖与分化情况,检测细胞黏附斑、护骨素的基因与蛋白表达及p65、p-p65蛋白表达水平,检测细胞的白细胞介素6分泌量。将革兰阳性与革兰阴性细菌分别接种于3种试件表面,观察试件表面的细菌黏附情况。

结果与结论:①接种8 h,纳米颗粒组细胞黏附数量多于水凝胶组、空白组(P < 0.05),水凝胶组多于空白组(P < 0.05);②纳米颗粒组、水凝胶组培养2,4,6,8 d的细胞增殖活力高于空白组(P < 0.05);③培养6 d后,纳米颗粒组、水凝胶组的细胞黏附斑及护骨素基因与蛋白表达均高于空白组(P < 0.05),纳米颗粒组高于水凝胶组(P < 0.05);④培养8 d后,纳米颗粒组、水凝胶组的碱性磷酸酶活性与白细胞介素6分泌量高于空白组(P < 0.05),纳米颗粒组高于水凝胶组(P < 0.05);纳米颗粒组p-p65蛋白水平高于水凝胶组(P < 0.05),水凝胶组高于空白组(P < 0.05);⑤纳米颗粒组对抗革兰阳性与革兰阴性细菌的能力强于水凝胶组、空白组(P < 0.05),水凝胶组强于空白组(P < 0.05);⑦结果表明,3D打印聚乳酸肱骨结合-α-β-GP温敏水凝胶和壳聚糖纳米颗粒生物活性涂层均可有效促进成骨细胞的黏附、增殖及碱性磷酸酶与抗菌因子的分泌,提高抗菌能力,该作用可能与激活NF-κB信号通路有关。

ORCID: 0000-0001-9039-8435(张忠岩)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 3D打印, 聚乳酸, 仿生肱骨, 壳聚糖, α-β-GP温敏水凝胶, 壳聚糖纳米颗粒, 细胞增殖, 抗菌能力

Abstract:

BACKGROUND: Polylactic acid has good bio-toughness and biocompatibility, but bio-inertity limits the interaction of polylactic acid resin implants with surrounding tissues after implantation in vivo. Therefore, research on improving the biological activity of polylactic acid resin and improving bone binding properties has gradually become a hotspot of biological materials.

OBJECTIVE: To observe the effects of polylactic acid resin combined with different bioactive coatings on the adhesion, proliferation and differentiation of osteoblasts, and to analyze their antibacterial ability.

METHODS: The three-dimensional printed polylactic acid biomimetic tibia specimens were made, and chitosan-α-β-GP thermosensitive hydrogel coating and chitosan nanoparticle coating were prepared on the surface. MC3T3-E1 cells were inoculated separately into three-dimensional printed polylactic acid biomimetic tibia (blank group), chitosan-α-β-GP thermosensitive hydrogel coated three-dimensional printed polylactic acid biomimetic tibia (hydrogel group) and shell-containing coating three-dimensional printed polylactic acid biomimetic tibia (nanoparticle group) surface. The cell adhesion, proliferation, and differentiation were observed. The cell adhesion plaque and osteoprotegerin gene and protein expression levels, and the expression levels of p65 and p-p65 were detected. The interleukin-6 secretion was detected. Gram-positive and Gram-negative bacteria were inoculated on the surface of the three samples, respectively, and the bacterial adhesion was observed.

RESULTS AND CONCLUSION: (1) After 8 hours of inoculation, the number of adherent cells in the nanoparticle group was higher than that in the hydrogel and blank groups (P < 0.05), and the number of adherent cells hydrogel group was higher than that in the blank group (P < 0.05).  (2) Cell viability in the nanoparticle and gel groups was higher than that in the blank group at 2, 4, 6 and 8 days (P < 0.05). (3) After 6 days of culture, the cell adhesion spots and the expression levels of osteoprotegerin protein and mPNA in the particle and hydrogel groups were higher than those in the blank group (P < 0.05), and they were higher in the nanoparticle group than those in the hydrogel group (P < 0.05). (4) After 8 days of culture, the alkaline phosphatase activity and the secretion content of interleukin-6 in the nanoparticle and hydrogel groups were higher than those in the blank group (P < 0.05), and they were higher in the nanoparticle group than those in the hydrogel group (P < 0.05). The level of p-p65 in the nanoparticle group was higher than that in the hydrogel group (P < 0.05), and it was higher in the hydrogel group than that in the blank group (P < 0.05). (5) The antibacterial abilities to Gram-positive and Gram-negative bacteria were as follows: nanoparticle group > hydrogel group > blank group (P < 0.05). (6) In summary, three-dimensional printed polylactic acid humerus combined with α-β-GP thermosensitive hydrogel and chitosan nanoparticles can effectively promote cell adhesion and proliferation and increase alkaline phosphatase activity, the secretion of antibacterial factors, and improve antibacterial ability, which is related to activation of NF-κB signaling pathway.

Key words: three-dimensional printing, polylactic acid, bionic humerus, chitosan, α-β-GP temperature-sensitive hydrogel, chitosan nanoparticles, cell proliferation, anti-bacterial ability

中图分类号: