[1] Varady NH, Grodzinsky AJ. Osteoarthritis year in review 2015: mechanics. Osteoarthritis Cartilage. 2016;24(1):27.[2] Malfait AM. Osteoarthritis year in review 2015: biology. Osteoarthritis Cartilage. 2016;24(1):21-26.[3] Lane NE, Shidara K, wise BL. Osteoarthritis year in review 2016: clinical. Osteoarthritis Cartilage. 2017;25(2):209-215.[4] Barton KI, Shekarforoush M, Heard BJ, et al. Use of pre‐clinical surgically induced models to understand biomechanical and biological consequences of PTOA development. J Orthop Res. 2017;35(3):454.[5] 肖亚平,戴慕巍,田发明,等.选择性雌激素受体调节剂对骨关节炎作用的研究进展[J].中国骨质疏松杂志,2016,22(12): 1613-1617.[6] Wallace IJ, Worthington S, Felson DT, et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc Natl Acad Sci U S A. 2017;114(35):9332-9336. [7] Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016; 12(7):412.[8] Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26-35.[9] Yoshimura N, Muraki S, Nakamura K, et al. Epidemiology of the locomotive syndrome: The research on osteoarthritis/ osteoporosis against disability study 2005-2015. Modern Rheumatol. 2017;27(1):1-7.[10] Kotlarz H, Gunnarsson CL, Fang H, et al. Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data. Arthritis Rheum. 2009;60(12):3546.[11] Breivik H. NSAIDs relieve osteoarthritis (OA) pain, but cardiovascular safety in question even for diclofenac, ibuprofen, naproxen, and celecoxib: what are the alternatives? Scand J Pain. 2017;16:148-149.[12] Creamer P, Hochberg M C. Osteoarthritis. Lancet. 1997;350 (9076):503-508.[13] Lanske B, Karaplis A C, Lee K, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science.1996;273(5275):663.[14] Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 2011;104(10):1363-1374.[15] Romanblas JA, Herrerobeaumont G. Targeting subchondral bone in osteoporotic osteoarthritis. Arthritis Res Ther. 2014; 16(6):494.[16] Romanblas J A, Castaeda S, Largo R, et al. An OA phenotype may obtain major benefit from bone-acting agents. Semin Arthritis Rheum. 2014;43(4):421-428.[17] Zhang H, Wang H, Zeng C, et al. mTORC1 activation downregulates FGFR3 and PTH/PTHrP receptor in articular chondrocytes to initiate osteoarthritis. Osteoarthritis Cartilage. 2017;25(6):952.[18] Qin L, Raggatt LJ, Partridge NC. Parathyroid hormone: a double-edged sword for bone metabolism. Trends Endocrinol Metab Tem. 2004;15(2):60.[19] Iwata A, Kanayama M, Oha F, et al. Effect of teriparatide (rh-PTH 1-34) versus bisphosphonate on the healing of osteoporotic vertebral compression fracture: a retrospective comparative study. BMC Musculoskeletal Disorders. 2017; 18(1):148.[20] Kaback L A, Soung D Y, Naik A, et al. Teriparatide (1-34 human PTH) regulation of osterix during fracture repair. J Cell Biochem. 2008;105(1):219-226.[21] 李文举,田征,宋兴华,等.甲状旁腺素与二膦酸盐治疗绝经妇女骨质疏松症有效性及安全性评价-Meta分析[J].中国骨质疏松杂志,2013,19(4):352-359.[22] Lee S. Endogenous parathyroid hormone and knee osteoarthritis: a cross-sectional study. Int J Rheumatic Dis. 2016;19(3):248-254.[23] Dai MW, Chu JG, Tian FM, et al. Parathyroid hormone(1-34) exhibits more comprehensive effects than celecoxib in cartilage metabolism and maintaining subchondral bone micro-architecture in meniscectomized guinea pigs. Osteoarthritis Cartilage. 2016;24(6):1103-1112.[24] Yan J Y, Tian F M, Wang W Y, et al. Parathyroid hormone (1-34) prevents cartilage degradation and preserves subchondral bone micro-architecture in guinea pigs with spontaneous osteoarthritis. Osteoarthritis Cartilage. 2014; 22(11):1869-1877.[25] Orth P, Cucchiarini M, Zurakowski D, et al. Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects in vivo. Osteoarthritis Cartilage. 2013;21(4):614-624.[26] Bellido M, Lugo L, Roman-blas JA, et al. Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthritis Cartilage. 2011;19(10): 1228-1236.[27] Lugo L, Villalvilla A, Gmez R, et al. Effects of PTH [1-34] on synoviopathy in an experimental model of osteoarthritis preceded by osteoporosis. Osteoarthritis Cartilage. 2012; 20(12):1619-1630.[28] Lamas AZ, Nascimento AM, Ars M, et al. The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen improve ANP levels and decrease nuclear translocation of NF-kB in estrogen-deficient rats. Pharmacol Rep Pr. 2017;69(4):798-805.[29] Komm BS, Mirkin S. An overview of current and emerging SERMs. J Steroid Biochem Mol Biol. 2014;143(9):207-222.[30] Pinkerton JV, Thomas S. Use of SERMs for treatment in postmenopausal women. J Steroid Biochem Mol Biol. 2014; 142(7):142-154.[31] Schicht M, Ernst J, Nielitz A, et al. Articular cartilage chondrocytes express aromatase and use enzymes involved in estrogen metabolism. Arthritis Res Ther. 2014;16(2):R93.[32] Carbone LD, Nevitt MC, Wildy K, et al. The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheumatism. 2004;50(11): 3516-3525.[33] Beck T J, Fuerst T, Gaither KW, et al. The effects of bazedoxifene on bone structural strength evaluated by hip structure analysis. Bone. 2015;77:115-119.[34] Pinkerton JV, Harvey JA, Lindsay R, et al. Effects of bazedoxifene/conjugated estrogens on the endometrium and bone: a randomized trial. J Clin Endocrinol Metab. 2014;99(2): 189-198.[35] Kim K, Svedbom A, Luo X, et al. Comparative cost-effectiveness of bazedoxifene and raloxifene in the treatment of postmenopausal osteoporosis in Europe, using the FRAX algorithm. Osteoporosis Int. 2014;25(1):325-337.[36] Tsai CL, Liu T K. Inhibition of estradiol-induced early osteoarthritic changes by tamoxifen. Life Sci. 1992;50(25): 1943-1951.[37] Tinti L, Niccolini S, Lamboglia A, et al. Raloxifene protects cultured human chondrocytes from IL-1β induced damage: a biochemical and morphological study. Eur J Pharmacol. 2011; 670(1):67-73.[38] Hattori Y, Kojima T, Kato D, et al. A selective estrogen receptor modulator inhibits tumor necrosis factor-α-induced apoptosis through the ERK1/2 signaling pathway in human chondrocytes. Biochem Biophys Res Commun. 2012;421(3): 418-424.[39] Ohta H, Solanki J. Incorporating bazedoxifene into the treatment paradigm for postmenopausal osteoporosis in Japan. Osteoporosis Int. 2015;26(3):849-863.[40] Ellis AG, Reginster JY, Luo X, et al. Bazedoxifene versus oral bisphosphonates for the prevention of nonvertebral fractures in postmenopausal women with osteoporosis at higher risk of fracture: a network meta-analysis. Value Health. 2014;17(4): 424-432.[41] Andersson A, Bernardi AI, Stubelius A, et al. Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis. Rheumatology.2016;55(3):553-563.[42] Hooshmand S, Soung DY, Lucas EA, et al. Genistein reduces the production of proinflammatory molecules in human chondrocytes. J Nutr Biochem. 2007;18(9):609-614.[43] Kavas A, Cagatay ST, Banerjee S, et al. Potential of Raloxifene in reversing osteoarthritis-like alterations in rat chondrocytes: an in vitro model study. J Biosci. 2013;38(1): 135-147.[44] Adler RA, Fuleihan EH, Bauer DC, et al. Managing osteoporosis patients after long-term bisphosphonate treatment: report of a task force of the american society for bone and mineral research. J Bone Miner Res. 2016;31(1): 16-35.[45] Gavald C, Bagan JV. Concept, diagnosis and classification of bisphosphonate-associatedosteonecrosis of the jaws. a review of the literature. Medicina Oral Patología Oral Y Cirugía Bucal. 2016;21(3):e260-e270.[46] Namba RS, Inacio MC, Cheetham T C, et al. Lower Total Knee Arthroplasty Revision Risk Associated With Bisphosphonate Use, Even in Patients With Normal Bone Density. J Arthrop. 2016;31(2):537-541.[47] Hayami T, Pickarski M, Wesolowski GA, et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheumatol. 2004;50(4): 1193-1206.[48] Carbone LD, Nevitt MC, Wildy K, et al. The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheumatism. 2004;50(11): 3516-3525.[49] Spector TD, Conaghan PG, Bucklandwright JC, et al. Effect of risedronate on joint structure and symptoms of knee osteoarthritis: results of the BRISK randomized, controlled trial [ISRCTN01928173]. Arthritis Res Ther. 2005;7(3): R625-R633.[50] Muehleman C, Green J, Williams J M, et al. The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. Osteoarthritis Cartilage. 2002;10(3): 226-233.[51] Acar N, Balkarli H, Soyuncu Y, et al. The determination of apoptosis rates on articular cartilages of ovariectomized rats with and without alendronate treatment. Histol Histopathol. 2016;31(6):635-645.[52] Redlich K, Herrak P, Grtz B, et al. Zoledronic acid protects from local and systemic bone loss in tumor necrosis factor-mediated arthritis. Arthritis Rheumatism. 2004;50(7): 2327-2337.[53] Matsuo A, Shuto T, Hirata G, et al. Antiinflammatory and chondroprotective effects of the aminobisphosphonate incadronate (YM175) in adjuvant induced arthritis. J Rheumatol. 2003;30(6):1280-1290.[54] Sims NA, Green JR, Glatt M, et al. Targeting osteoclasts with zoledronic acid prevents bone destruction in collagen-induced arthritis. 2004;50(7):2338-2346.[55] 李涧,董启榕,谢宗刚,等.降钙素对骨关节炎大鼠关节软骨的影响[J].江苏医药,2014,40(1):4-6.[56] Kamgarparsi K, Hong L, Naito A, et al. Growth-incompetent monomers of human calcitonin lead to a non-canonical direct relationship between peptide concentration and lag time. J Biolo Chem. 2017;292(36):14963-14976.[57] Kaskani E, Lyritis G P, Kosmidis C, et al. Effect of intermittent administration of 200 IU intranasal salmon calcitonin and low doses of 1α(OH) vitamin D 3 on bone mineral density of the lumbar spine and hip region and biochemical bone markers in women with postmenopausal osteoporosis: a pilots. Clin Rheumatol. 2005;24(3): 232-238.[58] Takano S, Uchida K, Inoue G, et al. Increase and regulation of synovial calcitonin gene-related peptide expression in patients with painful knee osteoarthritis. J Pain Res. 2017; 10(10):1099-1104.[59] Shibakawa A, Yudoh K, Masuko-hongo K, et al. The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow. Osteoarthritis Cartilage. 2005;13(8):679-687.[60] Holm-bentzen M, Hoeck HC, Alexandersen P, et al. 564 efficacy and safety of oral salmon calcitonin in patients with knee osteoarthritis: randomized double-blind placebo-controlled trial. Osteoarthritis Cartilage. 2010;18(18):S252.[61] Christian P, Thorbjorn C, Paulsen SJ, et al. Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes. BMC Musculoskeletal Disorders. 2010;11(1): 1-10.[62] Morales O, Samuelsson MK, Lindgren U, et al. Effects of 1alpha, 25-dihydroxyvitamin D3 and growth hormone on apoptosis and proliferation in UMR 106 osteoblast-like cells. Endocrinology. 2004;145(1):87.[63] Atkins GJ, Anderson PH, Findlay DM, et al. Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3. Bone. 2007;40(6):1517.[64] Gruber HE, Hoelscher G, Ingram JA, et al. 1,25(OH)2-vitamin D3 inhibits proliferation and decreases production of monocyte chemoattractant protein-1, thrombopoietin, VEGF, and angiogenin by human annulus cells in vitro. Spine. 2008; 33(7):755.[65] Gurlek A, Pittelkow MR, Kumar R. Modulation of growth factor/cytokine synthesis and signaling by 1alpha,25-dihydroxyvitamin D(3): implications in cell growth and differentiation. Endocr Rev. 2002;23(6):763.[66] Tetlow LC, Woolley DE. Expression of vitamin D receptors and matrix metalloproteinases in osteoarthritic cartilage and human articular chondrocytes in vitro. Osteoarthritis Cartilage, 2001;9(5):423. |