[1] 江凌勇,赵志河,王军.张应力对成骨分化骨髓间充质干细胞ODF mRNA 表达的影响[J].医用生物力学,2010,25(6): 428-432.[2] Sauerzweig S, Baldauf K, Braun H, et al. Time-dependent segmentation of BrdU-signal leads to late detection problems in studies using BrdU as cell label or proliferation marker. J Neurosci Methods. 2009;177(1):149-159.[3] 翟远坤,王鸣刚,李志忠,等.淫羊藿苷含药血清对体外培养骨髓间充质干细胞增殖及成骨性分化的影响[J].中华中医药杂志, 2012, 27(2): 480-484.[4] Hayashi Y, Tsuji S, Tsujii M, et al. Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. J Pharmacol Exp Ther. 2008; 326(2):523-531.[5] Yang Y, Tao C, Zhao D, et al. EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics. 2010;31(4):277-285.[6] 翟远坤,陈克明,葛宝丰,等.淫羊藿次苷Ⅱ通过激活雌激素信号通路促进骨髓间充质干细胞的成骨性分化[J].中国药理学通报, 2011,27(10):1451-1457.[7] Tamaddon M, Burrows M, Ferreira SA, et al. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Sci Rep. 2017;7:43519.[8] Voss A, McCarthy MB, Hoberman A, et al. Extracellular Matrix of Current Biological Scaffolds Promotes the Differentiation Potential of Mesenchymal Stem Cells. Arthroscopy. 2016; 32(11):2381-2392.[9] Liu Y, Chen T, Du F, et al. Single-Layer Graphene Enhances the Osteogenic Differentiation of Human Mesenchymal Stem Cells In Vitro and In Vivo. J Biomed Nanotechnol. 2016;12(6): 1270-1284.[10] Matic I, Antunovic M, Brkic S, et al. Expression of OCT-4 and SOX-2 in Bone Marrow-Derived Human Mesenchymal Stem Cells during Osteogenic Differentiation. Open Access Maced J Med Sci. 2016;4(1):9-16.[11] Ciuffreda MC, Malpasso G, Musarò P, et al. Protocols for in vitro Differentiation of Human Mesenchymal Stem Cells into Osteogenic, Chondrogenic and Adipogenic Lineages. Methods Mol Biol. 2016;1416:149-158.[12] Qin Y, Wang L, Gao Z, et al. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep. 2016;6:21961.[13] Todeschi MR, El Backly R, Capelli C, et al. Transplanted Umbilical Cord Mesenchymal Stem Cells Modify the In Vivo Microenvironment Enhancing Angiogenesis and Leading to Bone Regeneration. Stem Cells Dev. 2015;24(13):1570- 1581.[14] Shi Z, Zhao L, Qiu G, et al. The effect of extended passaging on the phenotype and osteogenic potential of human umbilical cord mesenchymal stem cells. Mol Cell Biochem. 2015;401(1-2):155-164.[15] Cheng H, Qiu L, Ma J, et al. Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep. 2011;38(8): 5161-5168.[16] Wang L, Seshareddy K, Weiss ML, et al. Effect of initial seeding de nsity on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering.Tissue Eng Part A. 2009 May;15(5):1009-1017.[17] 李家锋,万美容,刘小云,等.人骨髓间充质干细胞体外定向诱导成骨细胞的研究[J].口腔医学,2010,30(8):481-484.[18] Pereira T, Armada-da Silva PA, Amorim I, et al. Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model. Stem Cells Int. 2014;2014:376918.[19] Liu G, Li Y, Sun J, et al. In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix. Tissue Eng Part A. 2010 16(3):971-982.[20] Joseph M, Das M, Kanji S, et al. Retention of stemness and vasculogenic potential of human umbilical cord blood stem cells after repeated expansions on PES-nanofiber matrices. Biomaterials. 2014;35(30):8566-8575.[21] Kovacic N, Grcevic D, Katavic V, et al. Fas receptor is required for estrogen deficiency-induced bone loss in mice. Lab Invest. 2010;90(3):402-413.[22] Granéli C, Thorfve A, Ruetschi U, et al. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res. 2014n;12(1):153-165.[23] 钟晓红,王明刚,赵李平,等.骨髓间充质干细胞在糖尿病模型创面中向表皮细胞分化的初步研究[J].中国美容医学, 2010, 19(1): 65-67.[24] 徐胜利,周明,陈彪,等.神经营养因子基因修饰的神经干细胞在帕金森病大鼠模型中的治疗作用[J].中华老年医学杂志,2010, 29(1):58-63.[25] 张可华,蔡哲.神经干细胞向多巴胺能神经元分化机制的研究进展[J].中国康复理论和实践,2012,16(4):314-318.[26] 陈亚男,刘辉,赵红斌,等.红景天苷诱导骨髓间充质干细胞向神经细胞定向分化的机制研究[J].药学学报,2013,48(8): 1247-1252.[27] Martinez C, Henao A, Rodriguez JE, et al. Monitoring steady flow effects on cell distribution in engineered valve tissues by magnetic resonance imaging. Mol Imaging. 2013;12(7):1-13.[28] Rohaina CM, Then KY, Ng AM, et al. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res. 2014;163(3):200-210.[29] Peng Y, Li Z, Li Z. GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem Biophys Res Commun. 2013;440(4):558-563.[30] Tang N, Zhao Y, Feng R, et al. Lysophosphatidic acid accelerates lung fibrosis by inducing differentiation of mesenchymal stem cells into myofibroblasts. J Cell Mol Med. 2014;18(1):156-169.[31] Granéli C, Thorfve A, Ruetschi U, et al. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res. 2014;12(1):153-165.[32] 刘一涵,赵喜聪,张勇杰,等.不同诱导环境对牙周膜干细胞膜片生物学特性的影响[J].实用口腔医学,2012,28(3): 279-285.[33] Liu Y, Liu W, Hu C, et al. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells. 2011;29(11): 1804-1816.[34] 张明凯,李玉明.间充质干细胞和肿瘤关系的研究进展[J].当代医学,2012,18(15): 22-24.[35] 姜蒙,李晓黎. 肿瘤干细胞与肿瘤的侵袭转移[J].中华临床医师杂志:电子版,2010,4(4):450-452.[36] Wu CC, Sheu SY, Hsu LH, et al. Intra-articular Injection of platelet-rich fibrin releasates in combination with bone marrow-derived mesenchymal stem cells in the treatment of articular cartilage defects: An in vivo study in rabbits. J Biomed Mater Res B Appl Biomater. 2016 Apr 29.[Epub ahead of print][37] Goodrich LR, Chen AC, Werpy NM, et al. Addition of Mesenchymal Stem Cells to Autologous Platelet-Enhanced Fibrin Scaffolds in Chondral Defects: Does It Enhance Repair. J Bone Joint Surg Am. 2016;98(1):23-34. [38] Wang Z, Liang DC, Bai JY, et al. Overexpression of Sox9 gene by the lentiviral vector in rabbit bone marrow mesenchymal stem cells for promoting the repair of cartilage defect. Zhongguo Gu Shang. 2015;28(5):433-440. [39] Harada Y, Nakasa T, Mahmoud EE, et al. Combination therapy with intra-articular injection of mesenchymal stem cells and articulated joint distraction for repair of a chronic osteochondral defect in the rabbit. J Orthop Res. 2015;33(10): 1466-1473.[40] Ma X, Sun Y, Cheng X, et al. Repair of osteochondral defects by mosaicplasty and allogeneic BMSCs transplantation. Int J Clin Exp Med. 2015;8(4):6053-6059.[41] Yamasaki S, Mera H, Itokazu M, et al. Cartilage Repair With Autologous Bone Marrow Mesenchymal Stem Cell Transplantation: Review of Preclinical and Clinical Studies. Cartilage. 2014;5(4):196-202.[42] Wang X, Li Y, Han R, et al. Correction: Demineralized Bone Matrix Combined Bone Marrow Mesenchymal Stem Cells, Bone Morphogenetic Protein-2 and Transforming Growth Factor-β3 Gene Promoted Pig Cartilage Defect Repair. PLoS One. 2015;10(5):e0125948.[43] Hara ES, Ono M, Pham HT, et al. Fluocinolone Acetonide Is a Potent Synergistic Factor of TGF-β3-Associated Chondrogenesis of Bone Marrow-Derived Mesenchymal Stem Cells for Articular Surface Regeneration. J Bone Miner Res. 2015;30(9):1585-1596.[44] Wang X, Li Y, Han R, et al. Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-β3 gene promoted pig cartilage defect repair. PLoS One. 2014; 9(12):e116061.[45] Ishihara K, Nakayama K, Akieda S, et al. Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. J Orthop Surg Res. 2014;9:98.[46] 袁博,陈昆仑,张岚,等.大鼠骨髓间充质干细胞对 RH-35 肝癌细胞侵袭能力的影响[J].西安交通大学学报:医学版,2014,35(4): 455-459.[47] 周佳美,向慧玲,朱争艳,等.大鼠骨髓间充质干细胞条件培养基对大鼠肝癌细胞系CBRH-7919增殖能力的影响[J].天津医科大学学报,2011,17(4): 455-458.[48] Niess H, Bao Q, Conrad C, et al. Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma. Ann Surg. 2011;254(5):767-774. |