[1] Mano JF, Reis RL.Osteochondral defects: present situation and tissue engineering Redman SN, Old?eld SF, Archer CW.Current strategies for articular cartilage repair.Eur Cells Mater. 2005;9: 23-32.
[2] Michael A, Pasquale R, Daniel AG. Defining the challenge: The basic science of articular cartilage repair and response to injury. Sports Med Arthr. 2003; 11(3):168-181.
[3] Ivan Martin, Sylvie Miot, Andrea Barbero, et al.Osteochondral tissue engineering.Journal of Biomechanics. 2007;40: 750-765.
[4] Kramer J, Hegert C, Guan K. Embryonic stem cell- derived chondrogenic differentiation in vitro. Activation by BMP-2 and BMP-4.Mech Dev. 2000;92(2):193-205.
[5] Gobbi A, Nunag P, Malinowski K.Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes.Knee Surg Sports Traumatol Arthrosc.2005;13:213-221.
[6] Erickson GR, Gimble, JM, Franklin DM, et al. Chondrogenic potenial of asipose tissue derived stromal cells in vitro and in vivo. Biochem Biophys Rescommun.2002;290(2):763-769.
[7] McCulloch PC, Kang RW, Sobhy MH, et al.Prospective Evaluation of Prolonged Fresh Osteochondral Allograft Transplantation of the Femoral Condyle.Am J Sports Med.2007;35(3):411-420.
[8] Cheung HY, Lau KT, Lu TP,et al.A critical review on polymer-based bio-engineered materials for scaffold development.Composites: Part B.2007;38(3):291-300.
[9] Cross AE, Agnidis Z, Hutchison CR.Osteochondral defects of the talus treated with fresh osteochondral allograft transplantation.Foot Ankle Int.2001;22(5)385-391.
[10] Buma P, Pieper JS, van Tienen T, et al. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects-A study in rabbits. Biomaterials. 2003;24(19):3255-3263.
[11] Tratting S, Mamisch TC, Pinker K, et al.Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla.Eur Radiol.2008;18:1251-1259.
[12] Borrelli JR, Prickett WD, Ricci WM. Treatment of nonunions and osseous defects with bone graft and calcium sulfate.Clin Orthop Relat Res.2003;411(1):245-254.
[13] Hoemann CD, Hurtig M, Rossomach E, et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects.J Bone Joint Surg Am.2005;87:2671-2686.
[14] Chevrier A, Hoemann CD, Sun J, et al.Chitosan- glycerol phosphate-blood implants increase cell recruitment, transient vascularisation and subchondral bone remodeling in drilled cartilage defects.Osteoarthritis Cartilage. 2007;15:316-327.
[15] Li XD, Jin L, Balian G, et al. Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering. Biomaterials.2006;27(11):2426-2433.
[16] Fragonas E, Valente M, Pozzi-Mucelli M, et al.Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate.Biomaterials.2000;21:795-801.
[17] Xie L, Cao JL, Yue Y, et al. Study on the effect of T-2 Toxin and selenium on CD44 expression in the cultured human fetal chondrocytes in vitro. Acad J XJTU. 2003;15(1):78-81.
[18] Grande DA, Mason J, Light E, et al.Stem cells as platforms for delivery of genes to enhance cartilage repair.J Bone Joint Surg Am.2003;85-A(suppl 2):111-116.
[19] Chen JH, Chu YL, Cao JL, et al. T-2 toxin induces apoptosis, and selenium partly blocks, T-2 toxin induced apoptosis in chondrocytes through modulation of the Bax/Bcl-2 ratio. Food Chem Toxicol.2006;44(4):567-573.
[20] Cao PH, Cao JL, Cao LM, et al. The effect of Nivalenol on the metabolism of hyaluronic acid.Foreign Med Sci-Sect Medgeography.2007;28(2):94-96.
[21] 李丹,周广东,刘浥,等.骨髓间充质干细胞体外构建组织工程化半月板[J].组织工程与重建外科杂志,2013,(5): 251-255.
[22] 孙鹏浩.软骨细胞和骨髓间充质干细胞体外共培养的成瘤危险性的研究[D]. 江苏:东南大学,2014.
[23] Zhao F, Ma T. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol Bioeng.2005;91(4): 482-493.
[24] Csaki C,Matis U,Mobasheri A,et al. Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical,morphological and ultrastructural study. Histochem Cell Biol. 2007;128:507-520.
[25] Ma YL, Bryant HU, Zeng Q.New bone formation with teriparatide [human parathyroid hormone(134)]is not retarded by long term pretreatment with alendronate, estrogen, or raloxifene in ovariectomized rats. Endocrinology.2003; 144 (5): 2008-2015.
[26] Ponticiello MS,Schinagl RM,Kadiyala S,et al.Gelatin basedresorbable sponge as a carriermatrix for human mesenchymal stemcells in cartilage regeneration therapy.J Biomed M ater Res.2000;52(2):246-255.
[27] 安荣泽,赵俊延,王兆杰.脂肪干细胞与骨髓间充质干细胞成软骨能力的比较[J].中国组织工程研究,2013,(32): 5793-5798.
[28] 田义,赵萤,陈慧,等.压力调控下骨髓间充质干细胞与脂肪干细胞成软骨能力的比较研究[J].牙体牙髓牙周病学杂志, 2014,24(2):76-82.
[29] Katsuko S. Furukawa, Katsuaki Imura, Tetsuya Tateishi,et al.Scaffold-free cartilage by rotational culture for tissue engineering.J Biotechnol. 2008; 133(1):134-145.
[30] De Franceschi L,Grigolo B,Roseti L,et al. Transplantation of chondrocytes seeded on collagen-based scaffold in cartilage defects in rabbits.J Biomed Mater Res A.2005;75(3):612-622.
[31] 贾艳辉.人脐带间充质干细胞复合软骨细胞外基质支架修复兔膝关节软骨缺损[D].北京:中国人民解放军军医进修学院, 2013:1-90.
[32] Hsu SH,Chang SH,Yen HJ,et al.Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage Regeneration. Artif Organs. 2006;30 (1): 42-55.
[33] Vsita R,Shanmugam IK,Katt DS,et al.Improved biomaterials for tissue engineering applications: surface modification of polymers.Curr Top Med Chem. 2008;8(4):341-353.
[34] Blaker JJ, Maquet V, Jér me R,et al.Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering.Acta Biomater.2005;1(6):643-652.
[35] Gratz KR,Wong VW,Chen AC,et al.Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: tensile modulus of repair tissue and integration with host cartilage.J Biomech. 2006;1: 138-146.
[36] 李超.功能性微球在软骨组织工程支架材料中的应用[D].北京:北京大学,2013.
[37] 石业华.脂肪间充质干细胞成软骨组织诱导的新方法[D].山东:山东大学, 2014.
[38] Montembault A, Tahiri K, Korwin-Zmijowska C, et al. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Biochimie.2006;88:551-564.
[39] Madry H,Zurakowski D, Trippel SB. Overexpression of human insulin-like growth factor-1 promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation. Gene Ther.2001;8:1443.
[40] Mauney JR, Sjostorm S, Blumberg J, et al. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcified Tissue International. 2004;5:458-468.
[41] Camarero-Espinosa S, Rothen-Rutishauser B, Weder C, et al.Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering.Biomaterials. 2015;74: 42-52.
[42] Chang CH, Lin FH, Lin CC, et al.Cartilage tissue engineering on the surface of a novel gelatin calcium phosphate biphasic scaffold in a double chamber bioreactor. J Biomed Mater Res B Appl Biomater. 2004;2:313-321.
[43] Hutmacher DW,Sittinger M,Risbud MV.Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems.Trends Biotechnol.2004;22(7):354-362.
[44] Stevens MM, Marini RP, Schaefer D. In vivo engineering of organs: the bone bioreactor. Proc Natl Acad Sci USA.2005;32:11450-11455.
[45] Fuchs JR,Pomerantseva I,Ochoa ER,et al.Fetal tissue engineering:in vitro analysis of muscle Constructs.J Pediatr Surg.2003;38(9):1348-1353.
[46] Guo XD,Du JY,Zheng QX,et al.Neocartilage formation in vitro using transduced mesenehymal stem cells cultured on biomimetic biodegradable polymer scaffolds.Zhongguo YiXue KeXue Yuan XueBao. 2001;4:373-377.
[47] Rougraff BT, Kling TJ. Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow.J Bone Joint Surg Am.2002;84-A(6):921-929. |