[1] 王峣,徐志杰,李海昕,等.慢性腰痛生物学治疗的研究进展[J].中国骨与关节杂志, 2018,7(6):449-453.
[2] BARAKAT AH, ELWELL VA, LAM KS. Stem cell therapy in discogenic back pain. J Spine Surg. 2019;5(4):561-583.
[3] 余城墙,张宇,谢程欣,等.椎间盘退变分子生物学机制及再生治疗的优势与未来[J].中国组织工程研究,2019,23(30):4889-4896.
[4] 王爽,俞磊,贺云飞,等.组织工程技术修复椎间盘纤维环的研究现状及应用前景[J].中国组织工程研究,2019,23(26):4255-4259.
[5] BEALL DP, WILSON GL, BISHOP R, et al. VAST clinical trial: safely supplementing tissue lost to degenerative disc diseas. Int J Spine Surg. 2020;14(2):239-253.
[6] URITS I, CAPUCO A, SHARMA M, et al. Stem cell therapies for treatment of discogenic low back pain: a comprehensive review. Curr Pain Headache Rep. 2019;23(9):65.
[7] SILVA MJ, HOLGUIN N. Aging aggravates intervertebral disc degeneration by regulating transcription factors toward chondrogenesis. Faseb J. 2020;34(2):1970-1982.
[8] CHEN X, ZHU L, WU G, et al. A comparison between nucleus pulposus-derived stem cell transplantation and nucleus pulposus cell transplantation for the treatment of intervertebral disc degeneration in a rabbit model. Int J Surg. 2016;28:77-82.
[9] 王彦超,席志鹏,谢林.细胞疗法是修复退变椎间盘最有前景的技术[J].中国组织工程研究,2017,21(20):3234-3240.
[10] 陈悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能[J].科学学研究,2015, 33(2):242-253.
[11] 应倩,汪媛.医学类期刊H指数与影响因子、总被引频次的曲线拟合回归分析[J].中华医学图书情报杂志,2011,20(11):23-26.
[12] HIRSCH JE. An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship. Scientometrics. 2010;85(3):741-754.
[13] CHEN C, HU Z, LIU S, et al. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther. 2012;12(5):593-608.
[14] CHEN C, DUBIN R, KIM MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000-2014). Expert Opin Biol Ther. 2014;14(9):1295-317.
[15] SAKAI D, MOCHIDA J, YAMAMOTO Y, et al. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials. 2003;24(20):3531-3541.
[16] FENG JT, YANG XG, WANG F, et al. Efficacy and safety of bone substitutes in lumbar spinal fusion: a systematic review and network meta-analysis of randomized controlled trials. Eur Spine J. 2020;29(6):1261-1276.
[17] CHEUNG J, KAO P, SHAM P, et al. Etiology of developmental spinal stenosis: a genome-wide association study. J Orthop Res. 2018; 36(4):1262-1268.
[18] LIN Z, ZHAO Y, CHU PK, et al. A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials. 2019;219:119372.
[19] XIA K, GONG Z, ZHU J, et al. Differentiation of pluripotent stem cells into nucleus pulposus progenitor cells for intervertebral disc regeneration. Curr Stem Cell Res Ther. 2019;14(1):57-64.
[20] XIA K, ZHU J, HUA J, et al. Intradiscal injection of induced pluripotent stem cell-derived nucleus pulposus-like cell-seeded polymeric microspheres promotes rat disc regeneration. Stem Cells Int. 2019;2019:6806540.
[21] ZHU J, YU W, WANG Y, et al. lncRNAs: function and mechanism in cartilage development, degeneration, and regeneration. Stem Cell Res Ther. 2019;10(1):344.
[22] WANG C, GONG Z, HUANG X, et al. An injectable heparin-Laponite hydrogel bridge FGF4 for spinal cord injury by stabilizing microtubule and improving mitochondrial function. Theranostics. 2019;9(23):7016-7032.
[23] ZUO R, LIU M, WANG Y, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/beta-catenin signaling. Stem Cell Res Ther. 2019;10(1):30.
[24] SAITO S, KUWASHIMA N, KOIZUMI H, et al. In vivo function of homing receptors participating in lymphocyte recirculation: transfer analysis in SCID mice. Pathobiology. 1995;63(6):305-313.
[25] PEREIRA CL, GONCALVES RM, PEROGLIO M, et al. The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. Biomaterials. 2014; 35(28):8144-8153.
[26] JIN W, LIANG X, BROOKS A, et al. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice. Peer J. 2018;6:e6072.
[27] LIU J, PAN G, LIANG T, et al. HGF/c-Met signaling mediated mesenchymal stem cell-induced liver recovery in intestinal ischemia reperfusion model. Int J Med Sci. 2014;11(6): 626-633.
[28] MENG X, CHEN M, SU W, et al. The differentiation of mesenchymal stem cells to vascular cells regulated by the HMGB1/RAGE axis: its application in cell therapy for transplant arteriosclerosis. Stem Cell Res Ther. 2018;9(1):85.
[29] SAGGESE T, THAMBYAH A, WADE K, et al. Differential response of bovine mature nucleus pulposus and notochordal cells to hydrostatic pressure and glucose restriction. Cartilage. 2020;11(2):221-233.
[30] 李德芳,江增鑫,曾庆敏,等.猪髓核基质成分诱导骨髓间充质干细胞分化为脊索样细胞[J].中国组织工程研究,2019,23(33):5366-5371.
[31] 王刚,亢婷,刘毅,等.京尼平交联Ⅰ型胶原蛋白材料与人脂肪间充质干细胞的生物相容性[J].中国组织工程研究,2014,18(34): 5423-5428.
[32] CHIONO V, PULIERI E, VOZZI G, et al. Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J Mater Sci Mater Med. 2008;19(2):889-898.
[33] FRAUCHIGER DA, MAY RD, BAKIRCI E, et al. Genipin-enhanced fibrin hydrogel and novel silk for intervertebral disc repair in a loaded bovine organ culture model. J Funct Biomater. 2018;9(3):40.
[34] 杨文龙,张思泉,张国中,等.京尼平交联脱细胞气管支架种植自体骨髓间充质干细胞的体内原位移植研究[J].国际生物医学工程杂志,2019,42(5):375-382.
[35] PENG Y, HUANG D, LI J, et al. Genipin-crosslinked decellularized annulus fibrosus hydrogels induces tissue-specific differentiation of bone mesenchymal stem cells and intervertebral disc regeneration. J Tissue Eng Regen Med. 2020;14(3):497-509.
[36] OROZCO L, SOLER R, MORERA C, et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation. 2011;92(7):822-828.
[37] SAKAI D, MOCHIDA J, IWASHINA T, et al. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials. 2006;27(3):335-345.
[38] SAKAI D, NAKAMURA Y, NAKAI T, et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun. 2012;3: 1264.
[39] VADALA G, SOWA G, HUBERT M, et al. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J Tissue Eng Regen Med. 2012;6(5):348-355.
[40] SAKAI D, ANDERSSON GB. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat Rev Rheumatol. 2015;11(4): 243-256.
[41] SERIGANO K, SAKAI D, HIYAMA A, et al. Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. J Orthop Res. 2010;28(10):1267-1275.
[42] TUAN RS. Gel and cells: a promising reparative strategy for degenerated intervertebral discs. Ebiomedicine. 2020;55:102756.
[43] TSUJIMOTO T, SUDO H, TODOH M, et al. An acellular bioresorbable ultra-purified alginate gel promotes intervertebral disc repair: a preclinical proof-of-concept study. Ebiomedicine. 2018;37:521-534.
[44] UKEBA D, SUDO H, TSUJIMOTO T, et al. Bone marrow mesenchymal stem cells combined with ultra-purified alginate gel as a regenerative therapeutic strategy after discectomy for degenerated intervertebral discs. Ebiomedicine. 2020;53:102698.
[45] TSUJIMOTO T, SUDO H, TODOH M, et al. An acellular bioresorbable ultra-purified alginate gel promotes intervertebral disc repair: a preclinical proof-of-concept study. Ebiomedicine. 2018;37:521-534.
[46] HUSSAIN I, SLOAN SR, WIPPLINGER C, et al. Mesenchymal stem cell-seeded high-density collagen gel for annular repair: 6-week results from in vivo sheep models. Neurosurgery. 2019;85(2):E350-E359.
[47] HIYAMA A, MOCHIDA J, IWASHINA T, et al. Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res. 2008;26(5):589-600.
[48] RICHARDSON SM, WALKER RV, PARKER S, et al. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells. 2006;24(3):707-716.
[49] RISBUD MV, ALBERT TJ, GUTTAPALLI A, et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine (Phila Pa 1976). 2004;29(23):2627-2632.
[50] SAKAI D, MOCHIDA J, IWASHINA T, et al. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine (Phila Pa 1976). 2005;30(21):2379-2387.
[51] STECK E, BERTRAM H, ABEL R, et al. Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells. 2005; 23(3):403-411.
[52] BOREM R, MADELINE A, BOWMAN M, et al. Differential effector response of amnion- and adipose-derived mesenchymal stem cells to inflammation; implications for intradiscal therapy. J Orthop Res. 2019;37(11):2445-2456.
[53] 刘四海,周少怀,羊明智,等.炎症与椎间盘退行性变关系的研究进展[J].脊柱外科杂志,2020,18(2):140-144.
[54] MA K, CHEN S, LI Z, et al. Mechanisms of endogenous repair failure during intervertebral disc degeneration. Osteoarthritis Cartilage. 2019;27(1):41-48.
[55] XIA C, ZENG Z, FANG B, et al. Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects. Free Radic Biol Med. 2019;143:1-15.
[56] LIU W, RONG Y, WANG J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflammation. 2020;17(1):47.
[57] ZHANG Y, WANG WT, GONG CR, et al. Combination of olfactory ensheathing cells and human umbilical cord mesenchymal stem cell-derived exosomes promotes sciatic nerve regeneration Neural Regen Res. 2020;15(10):1903-1911.
[58] CHEN J, CHEN J, CHENG Y, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther. 2020;11(1):97.
[59] JIANG W, ZHANG X, HAO J, et al. SIRT1 protects against apoptosis by promoting autophagy in degenerative human disc nucleus pulposus cells. Sci Rep. 2014;4:7456.
[60] MIYAZAKI S, KAKUTANI K, YURUBE T, et al. Recombinant human SIRT1 protects against nutrient deprivation-induced mitochondrial apoptosis through autophagy induction in human intervertebral disc nucleus pulposus cells. Arthritis Res Ther. 2015;17:253.
|