[1] Zhang Y, Wu HK, Lv FX, et al. MG53 is a double-edged sword for human diseases. Sheng Li Xue Bao. 2016;68(4): 505-516.[2] Weisleder N, Takizawa N, Lin P, et al. Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Sci Trans Med. 2012; 4(139): 139-185.[3] He B, Tang RH, Weisleder N, et al. Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in delta-Sarcoglycan- deficient hamsters. Mol Ther. 2012;20(4): 727-735.[4] Park EY, Kwon OB, Jeong BC, et al. Crystal structure of PRY-SPRY domain of human TRIM72. Proteins. 2010;78(3): 790-795.[5] Nisole S, Stoye JP, Saib A. TRIM family proteins: retroviral restriction and antiviral defence [J]. Nat Rev Microbiol. 2005;3(10): 799-808.[6] Cammas F, Khetchoumian K, Chambon P, et al. TRIM involvement in transcriptional regulation. Adv Exp Med Biol. 2012;770: 59-76.[7] Caratozzolo MF, Micale L, Turturo MG, et al. TRIM8 modulates p53 activity to dictate cell cycle arrest. Cell Cycle. 2012;11(3): 511-523.[8] Zaman MMU, Nomura T, Takagi T, et al. Ubiquitination- deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol. 2013;33(24): 4971-4984.[9] Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011;11(11): 792-804.[10] Cambiaghi V, Giuliani V, Lombardi S, et al. TRIM proteins in cancer. Adv Exp Med Biol. 2012;770: 77-91.[11] Azra M, Muhammad A, Khan, Shaheen NK, et al. Diazoxide preconditioning of endothelial progenitor cells improves their ability to repair the infarcted myocardium. Cell Biol Int. 2015; 39(11): 1251-1263.[12] Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic PostC onditioning during reperfusion: comparison with ischemic preconditioning. Am J Phys. 2003;54(2): H579.[13] Mu D, Chang YS, Vexler ZS, et al. Hypoxia-inducible factor 1α and erythropoietin upregulation with deferoxamine salvage after neonatal stroke. Exp Neur. 2005;195(2): 407-415.[14] Zhao H. Ischemic PostC onditioning as a novel avenue to protect against brain injury after stroke. J Cerebral Blood Flow Metabol. 2009;29(5):873-885.[15] Liu KX, Li YS, Huang WQ, et al. Immediate but not delayed PostC onditioning during reperfusion attenuates acute lung injury induced by intestinal ischemia/reperfusion in rats: comparison with ischemic preconditioning. J Surg Res. 2009; 157(1): e55-e62.[16] Patschan D, Krupincza K, Patschan S, et al. Dynamics of mobilization and homing of endothelial progen Ito r cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Phys Renal Phys. 2006;291(1): F176-F185.[17] Jiang B, Liu X, Chen H, et al. Ischemic PostC onditioning attenuates renal ischemic/reperfusion injury in mongrel dogs. Urology. 2010;76(6): 1519.e1-1519.e7.[18] Zhou W, Zeng D, Chen R, et al. Limb ischemic preconditioning reduces heart and lung injury after an open heart operation in infants. Pediatr Cardiol. 2010; 31(1): 22-29.[19] Cao CM, Zhang Y, Weisleder N, et al. MG53 constitutes a primary determinant of cardiac ischemic preconditioning. Circulation. 2010;121(23): 2565-2574.[20] Wang X, Xie W, Zhang Y, et al. Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair. Circ Res. 2010;107(1): 76-83.[21] Zhang Y, Lv F, Jin L, et al. MG53 participates in ischaemic PostC onditioning through the RISK signalling pathway. Cardiovasc Res. 2011;91(1): 108-115.[22] Cai C, Masumiya H, Weisleder N, et al. MG53 nucleates assembly of cell membrane repair machinery. Nature Cell Biol. 2009;11(1): 56-64.[23] Masumiya H, Asaumi Y, Nishi M, et al. Mitsugumin 53-mediated maintenance of K+ currents in cardiac myocytes. Channels. 2009;3(1): 56-64.[24] Lorenz G, Axel M. Ischemic preconditioning improves post-ischemic skeletal muscle function. Am Surg.1996;62(5): 391-394.[25] Zhu H, Hou J, Roe JL, et al. Amelioration of ischemia-reperfusion-induced muscle injury by the recombinant human MG53 protein. Muscle Nerve. 2015;52(5): 852-858.[26] Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127(1): e6-e245.[27] Moloughney JG, Alloush J, Le-Hoang O, et al. Membrane repair protein Mitsugumin 53 as a potential therapeutic for the treatment of traumatic brain injury. FASEB J. 2013; 27(Meeting Abstracts).[28] Yao Y, Zhang B, Zhu H, et al. MG53 permeates through blood-brain barrier to protect ischemic brain injury. Oncotarget. 2016;7(16): 22474-22485.[29] Yao Y, Zhang M, Li M, et al. Protective effect of rhMG53 protein on a focal cerebral ischemia/reperfusion in a rat model. Med J Chin People's Liberat Army. 2014;39(6): 439-443.[30] Lv X, Tan J, Liu D, et al. Intratracheal administration of p38alpha short-hairpin RNA plasmid ameliorates lung ischemia-reperfusion injury in rats. J Heart Lung Trans. 2012; 31(6): 655-662.[31] Chiang CH, Chuang CH, Liu SL. Apocynin attenuates ischemia-reperfusion lung injury in an isolated and perfused rat lung model. Trans Res. 2011;158(1): 17-29.[32] Jia Y, Chen K, Lin P, et al. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair. Nat Commun. 2014;5: 4387.[33] 李郁,陈垦,徐在成,等. MG53在下肢远程缺血预适应保护肺缺血再灌注损伤中的作用[J]. 第三军医大学学报, 2015, 37(5): 409-413.[34] Duann P, Li H, Lin P, et al. MG53-mediated cell membrane repair protects against acute kidney injury. Sci Trans Med. 2015;7(279): 279ra36.[35] Wu Y, Huang J, Liu D, et al. Mitsugumin 53 protects the kidney from severe burn injury in mice. Burns Trauma. 2013; 1(3):128-133.[36] Lacerda L, Somers S, Opie LH, et al. Ischaemic PostC onditioning protects against reperfusion injury via the SAFE pathway]. Cardiovasc Res. 2009;84(2): 201-208.[37] Goodman MD, Koch SE, Fuller-Bicer GA, et al. Regulating RISK: a role for JAK-STAT signaling in PostC onditioning? Am J Phys. 2008;295(4): H1649-H1656.[38] Tsang A, Hausenloy DJ, Yellon DM. Myocardial PostC onditioning: reperfusion injury revisited. Am J Phys Heart Circ Phys. 2005;289(1): H2-H7.[39] Giampietri C, Paone A, D'Alessio A. Cell death. Int J Cell Biol. 2014;2014: 864062.[40] Cohen MV, Yang XM, Downey JM. The pH hypothesis of PostC onditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation. 2007; 115(14): 1895-1903.[41] Vuure DV, Lochner A. Ischaemic PostC onditioning_ from bench to bedside. Cardiovasc J Afr. 2008;19(6): 311-320.[42] Hwang M, Ko J, Weisleder N, et al. Redox-dependent oligomerization through a leucine zipper motif is essential for MG53-mediated cell membrane repair. Am J Phys. 2011; 301(1): C106.[43] Levy JR, Campbell KP, Glass DJ. MG53's new identity. Skeletal Muscle. 2013.[44] Cai C, Masumiya H, Weisleder N, et al. MG53 regulates membrane budding and exocytosis in muscle cells. J Biol Chem. 2009;284(5): 3314-3322.[45] Cai C, Weisleder N, Ko JK, et al. Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J Biol Chem. 2009;284(23): 15894-15902.[46] Bi GQ, Morris RL, Liao G, et al. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+ -regulated exocytosis. J Cell Biol. 1997;138(5): 999-1008.[47] Lin P, Zhu H, Cai C, et al. Nonmuscle myosin IIA facilitates vesicle trafficking for MG53-mediated cell membrane repair. FASEB J. 2012;26(5): 1875-1883.[48] McNeil P. Membrane repair redux: redox of MG53. Nature Cell Biol. 2009;11(1): 7-9.[49] Glover L, Brown RH Jr. Dysferlin in membrane trafficking and patch repair. Traffic. 2007;8(7): 785-794.[50] Figueroa XF, Duling BR. Gap junctions in the control of vascular function. Antiox Redox Signal. 2009;11(2): 251-266.[51] Boulaksil M, Winckels SK, Engelen MA, et al. Heterogeneous Connexin43 distribution in heart failure is associated with dispersed conduction and enhanced susceptibility to ventricular arrhythmias. Eur J Heart Fail.2010;12(9): 913-921.[52] Sato T, Ohkusa T, Honjo H, et al. Altered expression of connexin43 contributes to the arrhythmogenic substrate during the development of heart failure in cardiomyopathic hamster. Am J Phys Heart Circ Phys. 2008;294(3): H1164-H1173.[53] Zeghichi-Hamri S, de Lorgeril M, Salen P, et al. Protective effect of dietary n-3 polyunsaturated fatty acids on myocardial resistance to ischemia-reperfusion injury in rats. Nutr Res. 2010;30(12): 849-857.[54] Oei GT, Aslami H, Kerindongo RP, et al. Prolonged helium PostC onditioning protocols during early reperfusion do not induce cardioprotection in the rat heart in vivo: role of inflammatory cytokines. J Immunol Res. 2015;2015: 216798.[55] 蒋鑫,周平,杨小利,等. MG53预处理改善离体大鼠心脏缺血再灌注心律失常[J].第三军医大学学报,2015,37(1): 22-25.[56] Gregory RB, Hughes R, Riley AM, et al. Inos Ito l trisphosphate analogues selective for types I and II inos Ito l trisphosphate receptors exert differential effects on vasopressin-stimulated Ca2+ inflow and Ca2+ release from intracellular stores in rat hepatocytes. Biochem J. 2004;381: 519-526.[57] Namura S, Ooboshi D, Liu JL, et al. Neuroprotection after cerebral ischemia. Ann New York Acad Sci. 2013;1278(1): 25-32.[58] Ivanics T, Miklós Z, Ruttner Z, et al. Ischemia/reperfusion- induced changes in intracellular free Ca2+ levels in rat skeletal muscle fibers – an in vivo study. Pflüg Arch Eur J Phys. 2000; 440(2): 302-308.[59] Panama BK, Latour-Villamil D, Farman GP, et al. Nuclear factor kappaB downregulates the transient outward potassium current I(to,f) through control of KChIP2 expression. Circ Res. 2011;108(5): 537-543.[60] Liu W, Zhang C, Deng J, et al. Abstract-17484: MG53 modulates KChIP2 expression through regulation of NF-κB activity. Circulation. 2014;130(Suppl 2): A17484.[61] Li X, Xiao Y, Cui Y, et al. Cell membrane damage is involved in the impaired survival of bone marrow stem cells by oxidized low-density lipoprotein. J Cell Mol Med. 2014;18(12): 2445-2453. |