中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (21): 3045-3050.doi: 10.3969/j.issn.2095-4344.2016.21.001

• 组织工程神经材料 tissue-engineered nerve materials •    下一篇

人工仿生脊髓导管的制备及性能分析

朱 祥1,陈旭义2,李瑞欣3,邢 冉1,李 东4,涂 悦2   

  1. 1天津中医药大学,天津市 300193;2武警后勤学院附属医院脑科医院,脑创伤与神经疾病研究所,天津市神经创伤修复重点实验室,天津市  3001623解放军军事医学科学院卫生装备研究所,天津市  3001614天津医科大学总医院骨科,天津市  300052
  • 收稿日期:2016-03-16 出版日期:2016-05-20 发布日期:2016-05-20
  • 通讯作者: 涂悦,教授,硕士生导师,武警后勤学院附属医院脑科医院,天津市 300162
  • 作者简介:朱祥,男,1988年生,河南省驻马店市人,汉族,天津中医药大学在读硕士,主要从事神经内科、脊髓组织工程等方面研究。
  • 基金资助:

    天津市科技支撑计划重点项目(14ZCZDGX00500);国家自然科学基金青年项目(11102235);天津市自然科学基金重点项目(12JCZDJC24100);天津市卫生局科技基金项目(2014KZ135);武警后勤学院附属医院种子基金项目(FYM201432)

Preparation and performance of a bionic spinal catheter

Zhu Xiang1, Chen Xu-yi2, Li Rui-xin3, Xing Ran1, Li Dong4, Tu Yue2   

  1. 1Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; 2Affiliated Brain Hospital of Logistics University of Chinese People’s Armed Police Force, Institute of Brain Trauma and Neurological Disorders, Neurotrauma Repair Key Laboratory of Tianjin, Tianjin 300162, China; 3Medical Equipment Institute of Military Medical Sciences Academy, Tianjin 300161, China; 4Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin 300052, China
  • Received:2016-03-16 Online:2016-05-20 Published:2016-05-20
  • Contact: Tu Yue, Professor, Master’s supervisor, Affiliated Brain Hospital of Logistics University of Chinese People’s Armed Police Force, Institute of Brain Trauma and Neurological Disorders, Neurotrauma Repair Key Laboratory of Tianjin, Tianjin 300162, China
  • About author:Zhu Xiang, Studying for master’s degree, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
  • Supported by:

    the Key Projects of Tianjin Science and Technology Support Program, No. 14ZCZDGX00500; the National Natural Science Foundation of China, No. 11102235; Tianjin Natural Science Foundation of China, No. 12JCZDJC24100; Science and Technology Fund Project of Tianjin Public Health Bureau, No. 2014KZ135; the Seeding Fund of the Affiliated Hospital of Logistics University of Chinese People’s Armed Police Force, No. FYM201432

摘要:

文章快速阅读:

文题释义:
人工仿生脊髓导管制备方法:
有物理和化学交联法、相分离法、快速成型技术、低温干燥法等,不能满足脊髓导管精密的内部结构和直径小的需求。3D打印技术制备人工脊髓导管:克服了传统制造方法中存在的导管复杂外形制造困难和内部微结构无法控制的缺陷,对脊髓模型的内部结构进一步优化,设计出一个模拟脊髓白质的微结构,实现复杂形状的导管和精细的内部结构,引导轴突在特定的通道中生长。

 

背景:传统的组织工程导管制造方法存在复杂外形制造困难和内部空间结构无法控制的缺陷,不能满足一些微导管所要求的精确性和空间结构复杂性。

 

目的:设计一种人工仿生脊髓导管,并研究其性能。

 

方法:采用Solid Works制图软件建立导管数据模型,在3D打印机上生成平台扫描路径,以丝素蛋白和胶原蛋白为原料,制作人工仿生脊髓导管,检测导管的吸水率、孔隙率、力学性能及细胞相容性。将人工仿生脊髓导管置入SD大鼠背部皮下,置入后1,2,3,4周取出导管,观察导管降解情况。

 

结果与结论:人工仿生脊髓导管的微观孔隙分布均匀,大小不等,孔径为10-240 μm,孔隙率为(53.6±1.0)%,吸水膨胀率为(1 347.0±19.4)%,压缩弹性模量为(0.60±0.12)MPa;神经干细胞可在人工仿生脊髓导管孔隙中生长,呈球形或梭形,在导管表面密集生长,有些细胞伸出伪足附着在导管表面。人工仿生脊髓导管置入SD大鼠背部皮下1周后降解20%,2周后降解59%,3周时降解74%,4周后完全降解。结果表明人工仿生脊髓导管具有良好的细胞相容性及降解性。

 

 

 

 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

ORCID: 0000-0002-5469-8868(涂悦)

关键词: 生物材料, 材料相容性, 丝素蛋白, 胶原蛋白, 3D打印, 人工仿生脊髓导管, 国家自然科学基金

Abstract:

BACKGROUND: The traditional method of preparing tissue-engineered conduit has the defects of complex shape manufacturing and uncontrollable inner space structure, which cannot meet the requirements of some micro-catheters.

OBJECTIVE: To prepare a bionic spinal catheter and analyze its performance.
METHODS: The data model of the conduit was established using Solid Works software, and platform scan path was generated on three-dimensional printer to produce the bionic spinal catheter with fibroin and collagen as raw materials. Then the water absorption, porosity, mechanical properties and cellular compatibility of the conduits were detected. Next, the conduits were implanted into the subcutaneous tissue of rats and taken out at 1, 2, 3 and 4 weeks after surgery, respectively, to observe the degradation.
RESULTS AND CONCLUSION: The porosity of the conduit was (53.6±1.0)%, the water absorption was (1347±19.4)%, and the compression modulus was (0.60±0.12) MPa. The micropores distributed uniformly with different size ranging from 10 to 240 μm. Spherical or fusiform stem cells survived in the pores and densely adhered to the conduit with pseudopodia. The degradation rate of the conduit was 20%, 59%, 74% and 100% at 1, 2, 3 and 4 weeks after surgery, respectively. These findings indicate that the artificial bionic spinal catheter has good biocompatibility and degradability.

Key words: Biodegradation, Environmental, Spinal Cord, Tissue Engineering

中图分类号: