中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (17): 2533-2539.doi: 10.3969/j.issn.2095-4344.2016.17.014

• 数字化骨科 digital orthopedics • 上一篇    下一篇

有限元法分析胸腰椎骨折椎弓根钉置入内固定的应力分布

邓海棠   

  1. 肇庆市第一人民医院,广东省肇庆市 526000
  • 收稿日期:2016-03-08 出版日期:2016-04-22 发布日期:2016-04-22
  • 作者简介:邓海棠,男,1970年生,广东省云浮市人,汉族,1996年广东医学院毕业,副主任医师,主要从事脊柱创伤方面的研究。

Stress distribution of pedicle screw fixation for thoracolumbar fractures with finite element analysis

Deng Hai-tang   

  1. Zhaoqing First People’s Hospital, Zhaoqing 526000, Guangdong Province, China
  • Received:2016-03-08 Online:2016-04-22 Published:2016-04-22
  • About author:Deng Hai-tang, Associate chief physician, Zhaoqing First People’s Hospital, Zhaoqing 526000, Guangdong Province, China

摘要:

文章快速阅读:

 

文题释义:
脊柱物理模型:脊柱在解剖结构、负荷分布以及材料性能等方面的复杂性使得脊柱物理模型在建立时困难相对较大。虽然脊柱生物力学的研究获得了阶段性的进展,但是体外实验不能提供足够的生物力学结果,导致许多生物力学研究难以顺利进行,再加上体外生物力学实验价格比较昂贵,可重复性较差。
脊柱单元有限元模型:通过建立有限元模型能研究脊柱单元的僵直度及脊柱侧凸矫形后远期效果等,具有活体实验不具备的优势。模型建立过程中能够获取椎体和软组织的几何形态,对脊柱节段的各个机构赋予相应的生物力学属性,通过与体外力学实验结果进行对比,验证模型的有效性和准确性。
 
背景:脊柱手术对精确性要求相对较高。目前临床上对于椎弓根螺钉置入研究更多的集中在其安全性和稳定性方面,但是前提是螺钉的安全有效置入,选择置入点是置钉成功的关键。
目的:应用有限元方法分析胸腰椎骨折不同椎弓根钉置钉方案的应力分布。
方法:对2015年1月肇庆市第一人民医院骨科收治的1例胸腰椎爆裂骨折患者的T9-L3节段进行CT扫描,获得Dicom格式CT图像616张,导入工程软件,建立有限元几何模型,模拟后路矫形手术,分析胸腰椎骨折椎弓根钉置入内固定后的应力分布情况。
结果与结论:①在不同运动状态下,后路伤椎6钉2棒固定固定在前屈、侧弯、轴向旋转上的三维运动范围最小;其次为后路5钉2棒固定(单右侧伤椎固定);而后路伤椎4钉2棒固定三维运动范围最大,生物力学稳定性最差;②不同的固定模型下,后路跨伤椎4钉2棒固定、后路伤椎4钉2棒固定、后路伤椎6钉2棒固定、后路5钉2棒固定(单右侧伤椎固定)以及后路6钉2棒固定(伤椎上位固定)前屈状态时上位螺钉应力大于其他运动状态,其次为左轴旋、右轴旋;不同运动状态螺钉应力比较差异有显著性意义(P < 0.05);③不同的固定模型下,后路跨伤椎4钉2棒固定、后路伤椎4钉2棒固定、后路伤椎6钉2棒固定、后路5钉2棒固定(单右侧伤椎固定)以及后路6钉2棒固定(伤椎上位固定)后伸状态时上下位螺钉应力比值均显著大于其他运动状态(P < 0.05),其次为右轴旋、右侧弯,不同运动状态的上下位螺钉应力比值的比较差异有显著性意义(P < 0.05);④结果提示,有限元分析能够更好的模拟复杂的脊柱力学系统,准确反映脊柱模型椎弓根螺钉的应力分布,为临床制定椎弓根置钉方案提供参考依据。

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程
ORCID: 0000-0003-0840-2808(邓海棠)

关键词: 骨科植入物, 数字化骨科, 计算机辅助影像, 脊柱椎弓根钉, 有限元分析, 内固定, 连续扫描, 固定模型, 应力分布, 置钉方案

Abstract:

BACKGROUND: Spinal surgery requires a relatively high accuracy. At present, the study of pedicle screw fixation is more focused on the safety and stability, but the premise is the safe and effective screw placement. Selection of the insertion point is the key to success.

OBJECTIVE: To analyze stress distribution of different pedicle screw implantation methods for thoracolumbar fractures by using finite element analysis.
METHODS: T9-L3 segments of a thoracolumbar burst fractures patient were scanned in the Department of Orthopedics, Zhaoqing City First People’s Hospital in January 2015. 616 CT Dicom images were obtained and introduced into engineering software. Finite element geometric model was established. Posterior approach orthopedic surgery was simulated. Stress distribution after pedicle screw fixation for thoracolumbar fractures was analyzed.
RESULTS AND CONCLUSION: (1) The three-dimensional motion range of the fixation with six screws and two rods was small in anteflexion, lateral bending, and axial rotation, followed by five screws and two rods by posterior approach (single right vertebral fixation). The motion range of the fixation with four screws and two rods was biggest, but biomechanical stability was poorest. (2) In different fixation models, upper screw stress was larger in anteflexion than other states in the fixation with four screws and two rods by posterior trans-traumatic-vertebra, four screws and two rods by posterior injured vertebra, six screws and two rods by posterior injured vertebra, five screws and two rods by posterior approach (single right injured vertebra) and six screws and two rods by posterior approach (upper injured vertebra), followed by left axial rotation and right axial rotation. Significant differences in screw stress were found in different motion states (P < 0.05). (3) In different fixation modes, the stress ratio of upper and lower screws was significantly larger in the fixation with four screws and two rods by posterior trans-traumatic-vertebra, four screws and two rods by posterior injured vertebra, six screws and two rods by posterior injured vertebra, five screws and two rods by posterior approach (single right injured vertebra) and six screws and two rods by posterior approach (upper injured vertebra) than other motion states (P < 0.05), followed by right axial rotation and right lateral bending. Significant differences in stress ratio of upper and lower screws were detectable in different motion states (P < 0.05). (4) Results suggested that finite element analysis could better simulate complex spine mechanical system, accurately reflect the stress distribution of spinal pedicle screw model, and provide the basis for making pedicle screw program. 
中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

Key words: Spinal Fractures, Internal Fixators, Biomechanics, Finite Element Analysis, Tissue Engineering