[1] Michan S, Sinclair D. Sirtuins inmammals: insights into their biological function. Biochem J. 2007;404(1): 1-13.
[2] Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16(10): 4623-4635.
[3] Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005; 2(2): 105-117.
[4] Tanno M, Sakamoto J, Miura T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 2007;282(9): 6823-6832.
[5] Amanda T.White and Simon.Schenk. NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab. 2012;303: 308-321.
[6] Kukidome D, Nishikawa T, Sonoda K, et al. Activation of AMP-activated protein kinase reduces hyperdycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006;55(1): 120-127.
[7] Vinodkumar B. Pillai, Nagalingam R. Sundaresan, Gene Kim, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. Biol J Chem. 2010;285: 3133-3144.
[8] St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neuro degeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2): 397-408.
[9] Uldry M, Yang W, St-Pierre J, et al. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 2006;3(5): 333-341.
[10] Jackson MD, Schmidt MT, Oppenheimer NJ, et al. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J Biol Chem.2003; 278 (51): 50985-50998.
[11] Sauve AA, Moir RD, Schramm VL, et al. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Mol Cell. 2005;17(4): 595-601.
[12] Neugebauer RC, Uchiechowska U, Meier R, et al. Structure-activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. Med Chem. 2008;51(5): 1203-1213.
[13] Olesiak M, Hoffman RM, Harris MB. Effects of the sirtuin inhibitor, salermide, on exercise-induced changes in endothelial function. FASEB J. 2011;25: 1108-1114.
[14] Hoffman RM, Olesiak M, Harris MB. Effects of exercise training duration on SIRT1 and eNOS expression in rat aortas. FASEB J. 2012;26(17): 853.
[15] Servidio LR, Roberts SA, Laycock ML, et al. Role of SIRT1 in resistance exercise-induced changes in vascular function. FASEB J. 2012;26(18): 853.
[16] Ferrara N, Rinaldi B, Corbi G, et al. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res. 2008;11(1): 139-150.
[17] Suwa M, Nakano H, Radak Z, et al. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor-gamma coactivator-1alpha protein expressions in rat skeletal muscle.Metabolism. 2008;57(7): 986-998.
[18] Little JP, Safdar A, Wilkin GP, et al. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588(3): 1011-1022.
[19] Hokari F,Kawasaki E,Sakai A,et al. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. J Appl Physiol. 2010;109(2):332-340.
[20] Davis JM, Murphy EA, Carmichael MD,et al. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integ Comp Physiol, 2009;296(4): 1071-1077.
[21] Gurd B J,Perry CG, Heigenhauser GJ, et al. High-intensity interval training increases SIRT1 activity in human skeletal muscle. Appl Physiol Nutr Metab. 2010;35(3):350-357.
[22] Little JP, Safdar A,Wilkin GP, et al. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588(Pt 6):1011-1022.
[23] Li L, Pan R, Li R, Niemann B, et al. Mitochondrial biogenesis and peroxisome proliferator–activated receptor- coactivator-1 (PGC-1 ) deacetylation by physical activity: intact adipocytokine signaling is required. Diabetes. 2011;60: 157-167.
[24] Irving BA, Lanza I, Henderson G, et al. Effect of exercise training modality on skeletal muscle mitochondrial biogenesis in young and older adults. FASEB J. 2011;25: 1107-1120.
[25] Knutti D, Kaul A, Kralli A. A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol. 2000;20(7): 2411-2422.
[26] Steiner JL, E. Murphy A, McClellan JL, et al. Exercise training increases mitochondrial biogenesis in the brain. J Appl Physiol. 2011;111(4):1066-1071.
[27] Chien-Ting Liu and George A. Brooks. Mild heat stress induces mitochondrial biogenesis in C2C12 myotubes[J]. J Appl Physiol,2012,112(3):354-361.
[28] Wright DC, Han DH, Garcia-Roves PM, et al. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-lalpha expression.J Biol Chem. 2007;282(1) : 194-199.
[29] Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.Nature. 2002;418(6899): 797-801.
[30] Davis JM, Murphy EA, Carmichael MD, et al. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance.Am J Physiol Regul Integr Comp Physio. 2009;296(4): 1071-1077.
[31] Nieman DC, Williams AS, Shanely RA, et al. Quercetin′s influence on exercise performance and muscle mitochondrial biogenesis.Med Sci Sports Exerc. 2010;42(2): 338-345.
[32] Anderson RM, Barger JL, Edwards MG, et al. Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell. 2008;7(1): 101-111.
[33] Buler M, Aatsinki SM, Skoumal R, et al. Energy sensing factors PGC-1α and SIRT1 modulate PXR expression and function. Biochem Pharmacol. 2011;82(12): 2008-2015.
[34] Aquilano K, Baldelli S, Pagliei B, et al. Extranuclear localization of SIRT1 and PGC-1α: an insight into possible roles in diseases associated with mitochondrial dysfunction. Curr Mol Med. 2013;13(1):140-154.
[35] Costford SR, Bajpeyi S, Pasarica M, et al. Skeletal muscle Nampt is induced by exercise in humans. Am J Physiol Endocrinol Metab. 2010; 298(1): 117-126.
[36] Hokari F, Kawasaki E, Sakai A, et al. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles.J Appl Physiol.2010; 109(2): 332-340.
[37] Cacicedo JM, Gauthier MS, Lebrasseur NK, et al. Acute exercise activates AMPK and eNOS in the mouse aorta. Am J Physiol Heart Circ Physiol. 2011;301: 1255-1265.
[38] Fulco M, Sartorelli V. Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle. 2008;7(23): 3669-3679.
[39] Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241): 1056-1060.
[40] Rasbach KA, Gupta RK, Ruas JL, et al. PGC-1α regulates a HIF2 -dependent switch in skeletal muscle fiber types. PNAS. 2010;107(50): 21866 - 21871.
[41] Stford SR, BajpeyiS, PasaricaM, et al. Skeletal muscle Nampt is induced by exercise in humans.Am J Physiol Endocrinol Metab. 2010;298:117-126.
[42] Um JH, Park SJ, Kang H, et al. AMPK-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes. 2010;59(8): 554-563.
[43] White AT, Schenk S. NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab. 2012;303(3):308-321.
[44] Suchankova G, Nelson LE, Gerhart-Hines Z, et al. Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochem Biophys Res Commun. 2009;378 (4): 836-841.
[45] Hou X, Xu S, Maitland-Toolan KA, et al. SIRT1 regulates hepatocyte lipidmetabolism through activating AMP-activated protein kinase. J Biol Chem. 2008;283(29): 20015-20026.
[46] Lan F, Cacicedo JM, Ruderman N, et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity ofLKB1.Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008;283(41): 27628-27635.
[47] Cockman ME, Masson N, Mole DR, et al.Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem. 2000; 275:25733-25741.
[48] Hu CJ, Wang LY, Chodosh LA,et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003; 23:9361-9374.
[49] Hu CJ, Sataur A, Wang L, et al. The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell. 2007;18: 4528-4542.
[50] Henderson J, Withford-Cave JM, Duffy DL, et al. The EPAS1 gene influences the aerobic-anaerobic contribution in elite endurance athletes. Hum Genet. 2005;118:416-423.
[51] Nordsborg NB, Lundby C, Leick L,et al. Relative workload determines exercise induced increases in PGC-1alpha mRNA. Med Sci Sports Exerc. 2010;42:1477-1484.
[52] Gurd BJ, Little JP, Perry CG. Does SIRT1 determine exercise-induced skeletal muscle mitochondrial biogenesis: differences between in vitro and in vivo experiments? J Appl Physiol. 2012;112(5): 926-928.
[53] Menzies KJ, Singh K, Hood DA. SIRT1 is not required for exercise-induced mitochondrial biogenesis, but maintains basal organelle content and function. FASEB J. 2011;25(4): 1105-1112.
[54] Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1alpha. J Biol Chem. 2005;280: 16456- 16460.
[55] Menzies KJ, Chabi B, Hood DA, et al. Commentaries on Viewpoint: Does SIRT1 determine exercise-induced skeletal muscle mitochondrial biogenesis: differences between in vitro and in vivo experiments? J Appl Physiol. 2012; 112: 929-930.
[56] Philp A, Chen A, Lan D, et al. Sirtuin 1 (SIRT1) Deacetylase Activity Is Not Required for Mitochondrial Biogenesis or Peroxisome Proliferator-activated Receptor-Coactivator-1α (PGC-1α) Deacetylation following Endurance Exercise. J Biol Chem. 2011;286(9): 30561-30570.
[57] Chabi B, Adhihetty PJ, O'Leary MF, et al. Relationship between SIRT1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse.J Appl Physiol. 2009;107(6):1730-1735.
[58] Gurd BJ, Yoshida Y, McFarlan JT, et al. Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am J Physiol Regul Integ Comp Physiol. 2011;301 (1): 67-75.
[59] Sack MN.Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart. Am J Physiol Heart Circ Physiol. 2011;301(6):2191- 2197.
[60] Radak Z, Koltai E, Taylor AW, et al. Redox-regulating sirtuins in aging, caloric restriction, and exercise.Free Radic Biol Med. 2013;58:87-97.
[61] Menzies KJ, Singh K, Saleem A, et al. Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis.J Biol Chem. 2013;288(10):6968-6979.
[62] Corbi G, Conti V, Scapagnini G, et al. Role of sirtuins, calorie restriction and physical activity in aging. Front Biosci. 2012;4: 768-778. |