中国组织工程研究 ›› 2012, Vol. 16 ›› Issue (3): 449-454.doi: 10.3969/j.issn.1673-8225.2012.03.015

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

静电纺丝聚膦腈/明胶复合纤维支架的生物矿化行为**★◆

蔡  绒,毛吉富,曹晓艳,蔡  晴,丰  遥,杨小平   

  1. 北京化工大学有机无机复合材料国家重点实验室,北京市   100029
  • 收稿日期:2011-07-19 修回日期:2011-10-20 出版日期:2012-01-15 发布日期:2012-01-15
  • 通讯作者: 蔡晴,博士,副教授,北京化工大学有机无机复合材料国家重点实验室,北京市 100029 caiqing@ mail.buct.edu.cn
  • 作者简介:蔡绒★,女,1985年生,湖南省常德市人,汉族,北京化工大学毕业,硕士,主要从事生物材料方面的研究。 cai.rong.k@ gmail.com
  • 基金资助:

    国家自然科学基金面上项目(50873012),课题名称:侧基功能化聚膦腈/明胶杂化支架材料的制备和细胞亲和性研究;国家自然科学基金面上项目(51073016),课题名称:生物可降解聚膦腈和聚酯互穿网络体系及其生物学性能研究。

Biomineralization behavior of electrospun polyphosphazene/gelatin composite fibrous scaffold

Cai Rong, Mao Ji-fu, Cao Xiao-yan, Cai Qing, Feng Yao, Yang Xiao-ping   

  1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing  100029, China
  • Received:2011-07-19 Revised:2011-10-20 Online:2012-01-15 Published:2012-01-15
  • Contact: Cai Qing, Ph.D., Associate professor, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China caiqing@ mail.buct.edu.cn
  • About author:Cai Rong★, Master, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China cai.rong.k@ gmail.com
  • Supported by:

    the National Natural Science Foundation of China, No.50873012*, 51073016*

摘要:

背景:虽然静电纺丝高分子纤维的生物矿化研究文章已不少见,但国内外尚无关于静电纺丝聚膦腈及其与明胶复合纤维的生物矿化研究报道。
目的:考察聚膦腈/明胶复合纤维支架作为骨组织工程支架的可行性。
方法:静电纺丝法构建生物可降解聚膦腈/明胶复合纤维支架,采用5倍模拟体液,并结合扫描电镜、X射线能谱、X射线光电子能谱、傅里叶变换红外光谱等手段,观察其生物矿化行为。
结果与结论:与纯明胶的纤维膜相比,聚(丙氨酸乙酯-甘氨酸乙酯)膦腈(PAGP)和明胶混合溶液静电纺丝得到的复合纤维膜,经交联处理后仍能够保持良好的纤维形貌和多孔结构。在采用CO2平衡的改进5倍模拟体液中,纯PAGP和PAGP/明胶纤维表面沉积的矿物质都经历了片状二水合磷酸一氢钙前驱体的生成及其向羟基磷灰石转化的过程,但后者由于明胶成分的存在,整个过程发生发展的速度要明显快于前者。而对于纯明胶纤维,其在改进5倍模拟体液中浸泡24 h后,所生成矿物质仍主要为羟基磷灰石的前驱体二水合磷酸一氢钙。说明复合纤维中,疏水性PAGP的引入不仅有利于纤维形貌的保持,还能抑制明胶的溶出,使PAGP /明胶复合纤维的矿化性能明显改善。
 

关键词: 聚膦腈, 明胶, 静电纺丝, 复合纤维, 模拟体液

Abstract:

BACKGROUND: Although, there are many reports about the biomineralization of electrospun polymer fibers, the reports about the biomineralization of electrospun polyphosphazene/gelatin composite fibers are rare.
OBJECTIVE: To investigate the possibility of polyphosphzaene/gelatin composite fibrous matrix as the bone tissue engineering scaffold.
METHODS: Poly(alaine ethyl ester-co-glycine ethyl ester)phosphazene (PAGP)/gelatin composite nanofibers were prepared by blend electrospinning. Five times simulated body fluid (5SBF) was used to perform the biominerialization. And its bone binding activity was evaluated by scanning electron microscope, X-ray spectrum, X-ray photoelectron spectroscopy and Fourier transform infra-red spectroscopy techniques.
RESULTS AND CONCLUSION: Compared to pure gelatin fibers, the PAGP/gelatin composite fibers could remain their morphology, no fiber conglutination and damage of porous structure were observed after crosslinking treatment. In the 5SBF balanced with continuous CO2 bubbling, formation of sheet-like dicalcium phosphate dehydrate (DCPD) and its transformation into hydroxyapatite (HA) have been detected on both pure PAGP and PAGP/gelatin composite fibers. However, the procedure took place much faster on the latter than on the former, owing to the presence of gelatin component. Nevertheless, only DCPD have been observed on pure gelatin fibers during the 24 hours of 5SBF soaking period. The results illustrated that the presence of hydrophobic PAGP prevented the dissolution of gelatin and helped to maintain the fiber morphology, thus increased the biomineralizaiton behavior of PAGP/gelatin composite fibers in comparison with pure PAGP and gelatin fibers.
 

中图分类号: