中国组织工程研究 ›› 2020, Vol. 24 ›› Issue (28): 4437-4444.doi: 10.3969/j.issn.2095-4344.2302

• 生物材料综述 biomaterial review • 上一篇    下一篇

纳米纤维大孔支架制备技术在骨组织工程研究中的应用与意义

张伟忠,李  磊,何  贺,何  鑫   

  1. 上海理工大学材料科学与工程学院,上海市  200093

  • 收稿日期:2019-10-31 修回日期:2019-11-08 接受日期:2019-12-19 出版日期:2020-10-08 发布日期:2020-08-29
  • 作者简介:张伟忠,男,1993年生,浙江省湖州市人,汉族,上海理工大学材料科学与工程学院在读硕士,主要从事生物医用材料的研究。

Application and significance of nanofibrous macroporous scaffold preparation technology for bone tissue engineering

Zhang Weizhong, Li Lei, He He, He Xin   

  1. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

  • Received:2019-10-31 Revised:2019-11-08 Accepted:2019-12-19 Online:2020-10-08 Published:2020-08-29
  • About author:Zhang Weizhong, Master candidate, School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

摘要:

文题释义:

热致相分离:是一种特殊的制备类似于天然细胞外基质的聚合物纳米纤维材料的方法,首先是将聚合物与高沸点、低分子质量的液态或固态稀释剂混合,在高温时形成均相溶液,再将混合物溶液制成所需要的形状,降低温度使溶液发生相分离,然后用某些溶剂进行萃取除去稀释剂,最后进行冷冻干燥得到孔结构。

纳米纤维:是指直径为纳米尺度而长度较大的具有一定长径比的线状材料,此外,将纳米颗粒填充到普通纤维中对其进行改性的纤维也称为纳米纤维。狭义上讲,纳米纤维的直径介于1-100 nm之间;广义上讲,纤维直径低于1 000 nm的纤维均称为纳米纤维。

背景:用于骨组织工程的仿生多孔支架要求具有类细胞外基质纳米纤维结构和连通大孔结构,从而有效支持细胞植入、黏附、增殖等行为,促进组织再生。

目的:结合最新相关研究动态,综述用于骨组织工程的纳米纤维大孔支架制备技术研究进展。

方法:由第一作者以bone tissue engineeringnanofibrousmacroporousscaffolds”为英文检索词,以“骨组织工程、纳米纤维、大孔、支架”为中文检索词,使用计算机检索Web of science、知网、百度学术数据库中20002019年已发表的相关文献,并进行筛选,归纳和总结,最终纳入58篇相关文献进行综述。

结果与结论:目前构建纳米纤维结构方法仍局限于静电纺丝、热致相分离和自组装,单一方法制备的骨组织工程支架存在很多问题,其中最大的问题是:很难提供一个三维相互连通的大孔结构来模拟体内的微环境,诱导细胞的迁移、生长、分化、增殖,最终再生新的组织和器官。通过多技术手段的综合运用开发制备大孔纳米纤维支架是必要的,具有重要的科学与现实意义。三维打印对于结构的调控十分精确,可以对支架内部结构及外部形状进行定制,达到双重调控,为骨组织工程的将来带来了发展。

ORCID: 0000-0002-3530-7374(张伟忠)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 骨组织工程, 纳米纤维, 大孔, 支架, 热致相分离, 静电纺丝, 制备方法, 细胞外基质

Abstract:

BACKGROUND: Bionic porous scaffolds used in bone tissue engineering requires extracellular matrix-like nanofibrous and connected macroporous structure to effectively support cell implantation, adhesion, proliferation and other behaviors, and promote tissue regeneration.

OBJECTIVE: To summarize the research progress in nanorfibrous macroporous scaffold preparation technology for tissue engineering based on the latest relevant research trends.

METHODS: The first author searched Web of Science, CNKI and Baidu academic databases to retrieve papers published from 2000 to 2019 with the search terms “bone tissue engineering, nanofibrous, macroporous, scaffolds” in English and Chinese, respectively. Finally, 58 articles were included in result analysis.


RESULTS AND CONCLUSION: The scaffolds with nanofibrous structures are fabricated using three strategies, including electrospinning, thermally induced phase separation, and self-assembly process. However, bone scaffold fabricated by a single strategy failed to provide interconnected macropores to simulate the microenvironment in the body, which was necessary for cell migration, growth, differentiation, proliferation, and tissue and organ regeneration. Therefore, it is now of great practical and scientific significance to develop macroporous nanofibrous scaffold using a combination of several strategies. Three-dimensional printing technique can provide precise structure and enables the customization of the internal structure and external shape of the scaffold, which promotes the development of bone tissue engineering technique.  

Key words: bone tissue engineering, nanofibrous, macroporous, scaffolds, thermally induced phase separation, electrospinning, preparation method, extracellular matrix

中图分类号: