[1] HILKENS NA, CASOLLA B, LEUNG TW, et al. Stroke. Lancet. 2024;403(10446):2820-2836.
[2] FAN F, YANG L, LI R, et al. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother. 2020;129:110458.
[3] REPORT ON STROKE CENTER IN CHINA WRITING GROUP.《中国卒中中心报告2022》概要[J].中国脑血管病杂志,2024, 21(8):565-576.
[4] ZHAO Y, ZHANG X, CHEN X, et al. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med. 2022;49(2):15.
[5] THOMALLA G, SIMONSEN CZ, BOUTITIE F, et al. MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. N Engl J Med. 2018;379(7):611-622.
[6] GHOZY S, REDA A, VARNEY J, et al. Neuroprotection in Acute Ischemic Stroke: A Battle Against the Biology of Nature. Front Neurol. 2022;13:870141.
[7] XIONG Y, WAKHLOO AK, FISHER M. Advances in Acute Ischemic Stroke Therapy. Circ Res. 2022;130(8):1230-1251.
[8] 汪茂林,杨洪军.单细胞转录组测序技术在药物研究中的应用[J].药学学报,2023, 58(9):2551-2559.
[9] ZHENG J, RU W, ADOLACION JR, et al. Single-cell RNA-seq analysis reveals compartment-specific heterogeneity and plasticity of microglia. iScience. 2021; 24(3):102186.
[10] ZHENG K, LIN L, JIANG W, et al. Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. J Cereb Blood Flow Metab. 2022;42(1):56-73.
[11] TRAN MN, MAYNARD KR, SPANGLER A, et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron. 2021;109(19): 3088-3103.e5.
[12] TASIC B. Single cell transcriptomics in neuroscience: cell classification and beyond. Curr Opin Neurobiol. 2018;50: 242-249.
[13] JOVIC D, LIANG X, ZENG H, et al. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 2022;12(3):e694.
[14] WANG H. Microglia Heterogeneity in Alzheimer’s Disease: Insights From Single-Cell Technologies. Front Synaptic Neurosci. 2021;13:773590.
[15] YANG B, HU S, JIANG Y, et al. Advancements in Single-Cell RNA Sequencing Research for Neurological Diseases. Mol Neurobiol. 2024;61(11):8797-8819.
[16] HE Z, CHEN Q, WANG K, et al. Single-cell transcriptomics analysis of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. Eur J Neurosci. 2024;59(3):333-357.
[17] FERNÁNDEZ-MOYA SM, GANESH AJ, Plass M. Neural cell diversity in the light of single-cell transcriptomics. Transcription. 2023;14(3-5):158-176.
[18] HE Y, LU W, ZHOU X, et al. Unraveling Alzheimer’s disease: insights from single-cell sequencing and spatial transcriptomic. Front Neurol. 2024;15:1515981.
[19] 张晓琳,王卫娣,周子凯.单细胞测序在神经精神疾病研究及未来精准诊疗中的应用[J].中国医药导刊,2022,24(3):211-218.
[20] KE Y, JIAN-YUAN H, PING Z, et al. The progressive application of single-cell RNA sequencing technology in cardiovascular diseases. Biomed Pharmacother. 2022;154: 113604.
[21] MARTINS-FERREIRA R, CALAFELL-SEGURA J, LEAL B, et al. The Human Microglia Atlas (HuMicA) unravels changes in disease-associated microglia subsets across neurodegenerative conditions. Nat Commun. 2025;16(1):739.
[22] OLAH M, MENON V, HABIB N, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun. 2020;11(1):6129.
[23] AHMADI A, GISPERT JD, NAVARRO A, et al. Single-cell Transcriptional Changes in Neurodegenerative Diseases. Neuroscience. 2021;479:192-205.
[24] JEONG HW, DIÉGUEZ-HURTADO R, ARF H, et al. Single-cell transcriptomics reveals functionally specialized vascular endothelium in brain. Elife. 2022;11: e57520.
[25] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究, 2015,33(2):242-253.
[26] 宗淑萍.基于普赖斯定律和综合指数法的核心著者测评:以《中国科技期刊研究》为例[J].中国科技期刊研究,2016, 27(12):1310-1314.
[27] GUO K, LUO J, FENG D, et al. Single-Cell RNA Sequencing With Combined Use of Bulk RNA Sequencing to Reveal Cell Heterogeneity and Molecular Changes at Acute Stage of Ischemic Stroke in Mouse Cortex Penumbra Area. Front Cell Dev Biol. 2021;9:624711.
[28] SUN D, LUO F, FANG C, et al. Molecular mechanisms underlying the therapeutic effects of Linggui Zhugan decoction in stroke: Insights from network pharmacology and single-cell transcriptomics analysis. Medicine (Baltimore). 2024;103(13):e37482.
[29] WANG Z, WU X, YAN T, et al. Elevated Plasma Complement C1q Levels Contribute to a Poor Prognosis After Acute Primary Intracerebral Hemorrhage: A Prospective Cohort Study. Front Immunol. 2022;13:920754.
[30] FU X, YE F, WAN Y, et al. The Role of Complement C1qa in Experimental Intracerebral Hemorrhage. Transl Stroke Res. 2025;16(4):1229-1240.
[31] 张勇.我国高校阅读推广研究演进路径、热点与趋势分析[J].图书馆工作与研究, 2020(8):87-97.
[32] SOUILHOL C, TARDAJOS AYLLON B, LI X, et al. JAG1-NOTCH4 mechanosensing drives atherosclerosis. Sci Adv. 2022;8(35): eabo7958.
[33] ZHAO Y, SUN W, FAN Q, et al. Exploring the potential molecular intersection of stroke and major depression disorder. Biochem Biophys Res Commun. 2024; 720:150079.
[34] 唐荣,魏欣,马江,等.基于CiteSpace科学知识图谱分析石榴皮研究现状及热点[J].中草药,2023,54(12):3949-3961.
[35] ZUCHA D, ABAFFY P, KIRDAJOVA D, et al. Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia. Proc Natl Acad Sci U S A. 2024;121(46):e2404203121.
[36] NEAL M, RICHARDSON JR. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim Biophys Acta Mol Basis Dis. 2018; 1864(2):432-443.
[37] KHOSHNAM SE, MOALEMNIA A, ANBIYAEE O, et al. LncRNA MALAT1 and Ischemic Stroke: Pathogenesis and Opportunities. Mol Neurobiol. 2024;61(7):4369-4380.
[38] LIAO Y, CHENG J, KONG X, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Theranostics. 2020;10(21):9644-9662.
[39] STUART T, BUTLER A, HOFFMAN P, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888-1902.e21.
[40] XU S, LU J, SHAO A, et al. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol. 2020;11:294.
[41] OCHOCKA N, KAMINSKA B. Microglia Diversity in Healthy and Diseased Brain: Insights from Single-Cell Omics. Int J Mol Sci. 2021;22(6):3027.
[42] 高伟铭. 基于单细胞及空间转录组测序的放射性脑损伤研究[D].石家庄:河北大学,2023.
[43] 胡静涵,胡懿凡,蒋俊锋,等.单细胞转录组测序技术及其在肿瘤研究中的应用进展[J].海军军医大学学报,2023, 44(7):800-807.
[44] JI C, SHENG L, HAN K, et al. Microglial intervention in ischemic stroke: Roles and intervention strategies. Neural Regen Res. 2026;21(2):443-454.
[45] KANG R, GAMDZYK M, LENAHAN C, et al. The Dual Role of Microglia in Blood-Brain Barrier Dysfunction after Stroke. Curr Neuropharmacol. 2020;18(12):1237-1249.
[46] BAIK SH, KANG S, LEE W, et al. A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer’s Disease. Cell Metab. 2019; 30(3):493-507.e6.
[47] KALININA TS, SHISHKINA GT, LANSHAKOV DA, et al. Comparative Investigation of Expression of Glutamatergic and GABAergic Genes in the Rat Hippocampus after Focal Brain Ischemia and Central LPS Administration. Biochemistry (Mosc). 2023; 88(4):539-550.
[48] LIDDELOW SA, GUTTENPLAN KA, CLARKE LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481-487.
[49] ATTA AA, IBRAHIM WW, MOHAMED AF, et al. Microglia polarization in nociplastic pain: mechanisms and perspectives. Inflammopharmacology. 2023;31(3): 1053-1067.
[50] REN J, CHE Y, LI H, et al. SGK3 deficiency in macrophages suppresses angiotensin II-induced cardiac remodeling via regulating Ndufa13-mediated mitochondrial oxidative stress. Cell Mol Life Sci. 2024; 81(1):359.
[51] LIU B, SUN X, SUYEOKA G, et al. TGFβ signaling induces expression of Gadd45b in retinal ganglion cells. Invest Ophthalmol Vis Sci. 2013;54(2):1061-1069.
[52] WU DD, ZHANG F, HAO F, et al. Matricellular protein Cyr61 bridges lysophosphatidic acid and integrin pathways leading to cell migration. J Biol Chem. 2014;289(9): 5774-5783.
[53] LUO L, GRIBSKOV M, WANG S. Bibliometric review of ATAC-Seq and its application in gene expression. Brief Bioinform. 2022; 23(3):bbac061. |