[1] ZUBAIR M. Prevalence and interrelationships of foot ulcer, risk‐factors and antibiotic resistance in foot ulcers in diabetic populations: a systematic review and meta‐analysis. World J Diabetes. 2020;11(3):78-89.
[2] ARMSTRONG DG, TAN TW, BOULTON AJM, et al. Diabetic Foot Ulcers: A Review. JAMA. 2023;330(1):62-75.
[3] AL MAMUN A, SHAO C, GENG P, et al. The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing. J Inflamm Res. 2024;17:1481-1501.
[4] 滕鹰,祁放,徐广超,等.昼夜节律基因在创面愈合中的作用机制研究进展[J].中华烧伤与创面修复杂志,2024,40(7):689-693.
[5] REHMAN ZU, KHAN J, NOORDIN S. Diabetic foot ulcers: contemporary assessment and management. J Pak Med Assoc. 2023;73(7):1480-1487.
[6] LI Y, JU S, LI X, et al. Characterization of the microenvironment of diabetic foot ulcers and potential drug identification based on scRNA-seq. Front Endocrinol (Lausanne). 2023;13:997880.
[7] THEOCHARIDIS G, THOMAS BE, SARKAR D, et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat Commun. 2022; 13(1):181.
[8] RAMIREZ HA, PASTAR I, JOZIC I, et al. Staphylococcus aureus Triggers Induction of miR-15B-5P to Diminish DNA Repair and Deregulate Inflammatory Response in Diabetic Foot Ulcers. J Invest Dermatol. 2018;138(5):1187-1196.
[9] SAWAYA AP, STONE RC, BROOKS SR, et al. Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nat Commun. 2020;11(1):4678.
[10] WANG G, ZHANG E, CHEN A, et al. Single-cell RNA-seq analysis revealed the stemness of a specific cluster of B cells in acute lymphoblastic leukemia progression. PeerJ. 2024;12:e18296.
[11] HU C, LI T, XU Y, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 2023;51(D1):D870-D876.
[12] LI X, LIN Z, ZHAO F, et al. Unveiling the cellular landscape: insights from single-cell RNA sequencing in multiple myeloma. Front Immunol. 2024;15:1458638.
[13] MORABITO S, REESE F, RAHIMZADEH N, et al. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep Methods. 2023;3(6):100498.
[14] DENG P, LIANG H, WANG S, et al. Combined metabolomics and network pharmacology to elucidate the mechanisms of Dracorhodin Perchlorate in treating diabetic foot ulcer rats. Front Pharmacol. 2022;13:1038656.
[15] ZHANG Y, LAZZARINI PA, MCPHAIL SM, et al. Global Disability Burdens of Diabetes-Related Lower-Extremity Complications in 1990 and 2016. Diabetes Care. 2020;43(5):964-974.
[16] SENNEVILLE É, ALBALAWI Z, VAN ASTEN SA, et al. IWGDF/IDSA guidelines on the diagnosis and treatment of diabetes-related foot infections (IWGDF/IDSA 2023). Diabetes Metab Res Rev. 2024;40(3): e3687.
[17] HASSANSHAHI A, MORADZAD M, GHALAMKARI S, et al. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells. 2022;11(19):2953.
[18] BAUER TM, MOON JY, SHADIOW J, et al. Mechanisms of Impaired Wound Healing in Type 2 Diabetes: The Role of Epigenetic Factors. Arterioscler Thromb Vasc Biol. 2025;45(5):632-642.
[19] ZHAO X, XU M, TANG Y, et al. Decreased expression of miR-204-3p in peripheral blood and wound margin tissue associated with the onset and poor wound healing of diabetic foot ulcers. Int Wound J. 2023;20(2):413-429.
[20] HU SC, LAN CE. High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing on diabetic wound healing. J Dermatol Sci. 2016;84(2):121-127.
[21] LAMBERT AW, WEINBERG RA. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer. 2021;21(5):325-338.
[22] YUAN L, SUN Y, XU M, et al. miR-203 Acts as an Inhibitor for Epithelial-Mesenchymal Transition Process in Diabetic Foot Ulcers via Targeting Interleukin-8. Neuroimmunomodulation. 2019;26(5):239-249.
[23] 郭佳,张江林,黄中峰,等.CD147调控RSK2/Slug/EMT通路影响糖尿病足溃疡的愈合[J].中南大学学报(医学版),2020,45(8):929-934.
[24] LIU Z, BIAN X, LUO L, et al. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell. 2025;32(3):479-498.
[25] DONG Y, WANG M, WANG Q, et al. Single-cell RNA-seq in diabetic foot ulcer wound healing. Wound Repair Regen. 2024;32(6):880-889.
[26] BASNET S, SHARMA S, COSTEA DE, et al. Expression profile and functional role of S100A14 in human cancer. Oncotarget. 2019;10(31):2996-3012.
[27] ARIF SH. Correlation of S100A4 and S100A14 Expression With Clinico-Pathological Features and Tumor Location in Colorectal Cancer Patients. Cureus. 2024;16(7):e65615.
[28] SAPKOTA D, BRULAND O, COSTEA DE, et al. S100A14 regulates the invasive potential of oral squamous cell carcinoma derived cell-lines in vitro by modulating expression of matrix metalloproteinases, MMP1 and MMP9. Eur J Cancer. 2011;47(4):600-610.
[29] CHEN H, YUAN Y, ZHANG C, et al. Involvement of S100A14 protein in cell invasion by affecting expression and function of matrix metalloproteinase (MMP)-2 via p53-dependent transcriptional regulation. J Biol Chem. 2012;287(21):17109-17119.
[30] ZHU M, WANG H, CUI J, et al. Calcium-binding protein S100A14 induces differentiation and suppresses metastasis in gastric cancer. Cell Death Dis. 2017;8(7):e2938.
[31] HUANG F, LU X, YANG Y, et al. Microenvironment-Based Diabetic Foot Ulcer Nanomedicine. Adv Sci (Weinh). 2023;10(2):e2203308.
[32] CHEN C, LI X, HU Y, et al. Electrical stimulation promoting the angiogenesis in diabetic rat perforator flap through attenuating oxidative stress-mediated inflammation and apoptosis. PeerJ. 2024;12:e16856.
[33] TANG Y, JI H, YAN Y, et al. Enhancing diabetic foot ulcer healing: Impact of the regulation of the FUS and ILF2 RNAbinding proteins through negative pressure wound therapy. Int J Mol Med. 2024;54(5):103.
[34] HASHIDA H, COFFEY RJ. Significance of a calcium-binding protein S100A14 expression in colon cancer progression. J Gastrointest Oncol. 2022;13(1):149-162.
[35] FAN X, CUI L, ZENG Y, et al. 14-3-3 Proteins Are on the Crossroads of Cancer, Aging, and Age-Related Neurodegenerative Disease. Int J Mol Sci. 2019;20(14):3518.
[36] ALJABAL G, YAP BK. 14-3-3σ and Its Modulators in Cancer. Pharmaceuticals (Basel). 2020;13(12):441.
[37] DU N, LI D, ZHAO W, et al. Stratifin (SFN) Regulates Cervical Cancer Cell Proliferation, Apoptosis, and Cytoskeletal Remodeling and Metastasis Progression Through LIMK2/Cofilin Signaling. Mol Biotechnol. 2024; 66(11):3369-3381.
[38] CHEN J, ANANTHANARAYANAN B, SPRINGER KS, et al. Suppression of LIM Kinase 1 and LIM Kinase 2 Limits Glioblastoma Invasion. Cancer Res. 2020;80(1):69-78.
[39] HE Y, ZHANG L, HE Y, et al. Involvement of LIMK2 in actin cytoskeleton remodeling during the definitive endoderm differentiation. In Vitro Cell Dev Biol Anim. 2021;57(5):493-500.
[40] LY M, SCHIMMER C, HAWKINS R, et al. Integrin-based adhesions promote cell-cell junction and cytoskeletal remodelling to drive embryonic wound healing. J Cell Sci. 2024;137(5):jcs261138. |