中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (13): 3458-3473.doi: 10.12307/2026.324

• 干细胞相关大数据分析 Stem cell-related big data analysis • 上一篇    下一篇

骨质疏松相关外泌体诊断标志物的鉴定与药物初筛

梁  周1,2,潘成镇2,陈  锋3,张  驰3,杨  博2,韦宗波2,蒙建华2,周  砫1   

  1. 1广西中医药大学,广西壮族自治区南宁市   530000;2玉林市中西医结合骨科医院,广西壮族自治区玉林市   537000;3广西中医药大学附属瑞康医院,广西壮族自治区南宁市   530011
  • 接受日期:2025-07-07 出版日期:2026-05-08 发布日期:2025-12-26
  • 通讯作者: 张驰,博士,主治医师,广西中医药大学附属瑞康医院,广西壮族自治区南宁市 530011
  • 作者简介:梁周,男,1981年生,广西壮族自治区玉林市人,汉族,广西中医药大学在读博士,副主任医师,主要从事中医药防治骨伤疾病的研究。
  • 基金资助:
    国家自然科学基金青年科学基金项目(82405434),项目负责人:张驰;广西青年岐黄学者培养项目(GXQH202421),项目负责人:梁周;广西自然科学基金面上项目(2025GXNSFAA069451),项目负责人:梁周;广西壮族自治区中医药自筹经费科研课题(GXZYK20230695),项目负责人:梁周;广西高校中青年教师科研基础能力提升项目(2024KY0295),项目负责人:张驰;广西研究生教育创新计划项目(YCBXJ2023034),项目负责人:梁周;广西中医药防治骨伤疾病重点研究室(培育)(桂中医药科教发[2023]9号),项目负责人:梁周

Identification of diagnostic biomarkers related to osteoporosis exosomes and preliminary drug screening

Liang Zhou1, 2, Pan Chengzhen2, Chen Feng3, Zhang Chi3, Yang Bo2, Wei Zongbo2, Meng Jianhua2, Zhou Zhu1   

  1. 1Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China; 2Yulin Integrated Traditional Chinese and Western Medicine Orthopedic Hospital, Yulin 537000, Guangxi Zhuang Autonomous Region, China; 3Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
  • Accepted:2025-07-07 Online:2026-05-08 Published:2025-12-26
  • Contact: Zhang Chi, MD, Attending physician, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
  • About author:Liang Zhou, Doctoral candidate, Associate chief physician, Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China; Yulin Integrated Traditional Chinese and Western Medicine Orthopedic Hospital, Yulin 537000, Guangxi Zhuang Autonomous Region, China
  • Supported by:
    National Natural Science Foundation of China (Youth Science Fund Project), No. 82405434 (to ZC); Guangxi Young Qihuang Scholars Training Project, No. GXQH202421 (to LZ); Guangxi Natural Science Foundation (General Program), No. 2025GXNSFAA069451 (to LZ); Guangxi Zhuang Autonomous Region Traditional Chinese Medicine Self-raised Fund Research Project, No. GXZYK20230695 (to LZ); Guangxi University Young and Middle-aged Teachers' Scientific Research Basic Ability Improvement Project, No. 2024KY0295 (to ZC); Guangxi Graduate Education Innovation Program Project, No. YCBXJ2023034 (to LZ); Guangxi Traditional Chinese Medicine Prevention and Treatment of Bone Injury Key Research Room (Cultivation), No. [2023]9 (to LZ)

摘要:

文题释义:

骨质疏松:是一种常见的全身性骨代谢性疾病,特点为骨量减少、骨微结构退化、骨脆性增加及骨折风险升高,尤其在老年人群和绝经后女性中患病率较高。骨质疏松的发病机制复杂,涉及骨吸收和骨形成的动态失衡,通常由遗传因素、内分泌紊乱、炎症反应及衰老相关信号通路的改变所介导。
外泌体:作为细胞间信息传递的重要媒介,是近年研究的热点。外泌体是一种由细胞主动分泌的纳米级囊泡,携带包括蛋白质、脂质、mRNA、miRNA、长链非编码RNA及环状RNA在内的多种活性分子,参与多种生物过程,能够通过体液循环分布到全身,在调节免疫应答、促进细胞修复及调控疾病进程方面具有重要作用。

摘要
背景:近年来,外泌体作为细胞间信息传递的关键递质,在骨质疏松的发生、进展及治疗中发挥重要作用,外泌体携带的miRNA和蛋白质等活性分子可调控成骨细胞与破骨细胞功能,影响骨代谢平衡,但具体机制尚需进一步研究。 
目的:利用4D-DIA蛋白质组学、多种机器学习算法、孟德尔随机化分析鉴定和验证骨质疏松相关外泌体核心基因并探讨免疫调控机制,预测潜在的靶向药物,为骨质疏松的机制研究和精准治疗提供新思路。
方法:将12只SD大鼠分为假手术组、骨质疏松模型组,每组6只,采用卵巢切除法造模完成后取大鼠股骨组织进行4D-DIA蛋白质组学检测,鉴定差异基因,同时进行加权基因共表达网络分析。从GEO整理GSE56815和GSE7158表达谱作为验证数据集。从Gene Cards数据库下载外泌体相关基因,将其与蛋白组学的加权基因共表达网络分析模块基因、验证数据集差异基因取交集获得骨质疏松-外泌体相关基因,并进行功能富集分析。随后利用随机森林、LASSO回归和支持向量机3种机器学习算法分别筛选特征基因并取交集,以获得骨质疏松-外泌体核心基因,进一步建立预测模型并进行受试者工作特征曲线验证。采用CIBERSORT进行免疫浸润分析免疫细胞亚群在骨质疏松中的表达差异,采用单样本基因富集分析骨质疏松-外泌体核心基因与免疫细胞亚群间的关联性,同时分析核心基因的相关生物学通路。通过StarBase数据库预测骨质疏松-外泌体核心基因结合蛋白调控网络。最后,通过两样本孟德尔随机化验证外泌体核心基因与骨质疏松的因果关系,通过药物特征数据库进行药物富集分析,利用CB-DOCK2网站进行分子对接可视化。
结果与结论:①4D-DIA蛋白质组学获得1 322个骨质疏松差异蛋白,加权基因共表达网络分析筛选出2个特征模块含402个基因,Gene Cards数据库整理出878个外泌体相关基因,GEO验证数据集差异分析获得4 447个差异蛋白,三部分基因取交集获得的31个基因为骨质疏松-外泌体相关基因;②相关基因的功能富集分析结果显示主要与中性粒细胞胞外陷阱的形成、Ras相关蛋白1信号通路、焦点黏附斑有关;③3种机器学习算法鉴定出4个骨质疏松-外泌体核心基因,其中在动物模型和GEO验证数据集中差异表达相同的有2个基因:ITGB3、SERPINA1。受试者工作特征曲线显示ITGB3、SERPINA1在动物模型、GEO验证数据集中皆具备较高的曲线下面积值,单个基因或2个基因组成的模型曲线下面积值皆大于0.9;④免疫浸润基因富集分析结果显示ITGB3、SERPINA1的高表达与M1型巨噬细胞呈正相关性,ITGB3、SERPINA1的高表达与NOD样受体信号通路有关;⑤基因结合蛋白调控网络显示ITGB3、SERPINA1共同调控HNRNPC、G3BP1、EIF3D、CTCF、U2AF2、MDTH等10个RNA结合蛋白;⑥两样本孟德尔随机化分析结果显示SERPINA1对骨质疏松表现出抑制作用,是骨质疏松的保护因素;⑦SERPINA1的药物富集分析结果显示有36种药物的P值< 0.05,分子对接发现有9种药物的结合能小于-29.4 kJ/mol,其中β-胡萝卜素与SERPINA1的结合能最强(-35.28 kJ/mol)。上述结果显示,ITGB3、SERPINA1是骨质疏松-外泌体核心基因,通过参与特定免疫过程、调控NOD样受体信号通路在疾病进展中发挥关键作用,对骨质疏松的诊断具有精准预测效果。

关键词: 外泌体, 骨质疏松, 4D-DIA蛋白质组学, 孟德尔随机化, 机器学习算法, 加权基因共表达网络分析, 预测模型, 免疫细胞, 生物学功能, 调控网络

Abstract: BACKGROUND: In recent years, exosomes, as key mediators of intercellular communication, have played important roles in the occurrence, progression, and treatment of osteoporosis. The active molecules they carry, such as miRNAs and proteins, can regulate the functions of osteoblasts and osteoclasts and affect bone metabolic balance. However, the specific mechanisms still require further research.
OBJECTIVE: To identify and validate core exosomal genes in osteoporosis, explore their immune regulatory mechanisms, and predict potential targeted drugs using 4D-DIA proteomics, multiple machine learning algorithms, and Mendelian randomization analysis, providing new insights for mechanistic research and precision treatment of osteoporosis.
METHODS: Twelve Sprague-Dawley rats were divided into two groups: sham surgery group and osteoporosis model group, with 6 rats in each group. After model establishment by ovariectomy, femoral tissue samples of rats were collected for 4D-DIA proteomic analysis to identify differentially expressed genes, along with Weighted Gene Co-expression Network Analysis. Expression profiles GSE56815 and GSE7158 were collected from the GEO database as validation datasets. Exosome-related genes were downloaded from the GeneCards database. The intersections of these genes with Weighted Gene Co-expression Network Analysis module genes from proteomics and differentially expressed genes from validation datasets were used to obtain osteoporosis-exosome related genes. Functional enrichment analysis was performed. Subsequently, three machine learning algorithms - Random Forest, LASSO, and support vector machine - were used to screen feature genes separately, and their intersection was taken to obtain osteoporosis-exosome core genes. A prediction model was further established and the receiver operating characteristic curve was verified. CIBERSORT was used for immune infiltration analysis to examine the differential expression of immune cell subpopulations in osteoporosis. Single-sample gene set enrichment analysis was used to analyze the correlation between osteoporosis-exosome core genes and immune cell subpopulations, and simultaneously analyze the relevant biological pathways of the core genes. StarBase database was applied to predict the RNA Binding Protein regulatory network of osteoporosis-exosome core genes. Finally, two-sample Mendelian randomization was employed to verify the causal relationship between exosome core genes and osteoporosis. Drug enrichment analysis was conducted through DSigDB database. Molecular docking visualization was performed using the CB-DOCK2 website. 
RESULTS AND CONCLUSION: (1) 4D-DIA proteomics identified 1 322 differential proteins related to osteoporosis. Through Weighted Gene Co-expression Network Analysis, two characteristic modules containing 402 genes were identified. The Gene Cards database curated 878 exosome-related genes. Differential analysis of the GEO validation dataset identified 4 447 differential proteins. The intersection of these three gene sets yielded 31 genes associated with osteoporosis and exosomes. (2) Functional enrichment analysis of the related genes indicated that they were primarily associated with neutrophil extracellular trap formation, the Rap1 signaling pathway, and focal adhesions. (3) Three machine learning algorithms identified four core genes related to osteoporosis and exosomes, among which two genes (ITGB3 and SERPINA1) exhibited consistent differential expression in both animal models and the GEO validation dataset. The receiver operating characteristic curve showed that ITGB3 and SERPINA1 exhibited high area under the curve values in both the animal models and the GEO validation dataset. Models constructed with either individual genes or a combination of the two genes achieved area under the curve values greater than 0.9. (4) Immune infiltration gene set enrichment analysis revealed that the high expression of ITGB3 and SERPINA1 was positively correlated with M1 macrophages. High expression of ITGB3 and SERPINA1 was also associated with the NOD-like receptor signaling pathway. (5) The RNA Binding Protein regulatory network showed that ITGB3 and SERPINA1 jointly regulated 10 RNA-binding proteins, including HNRNPC, G3BP1, EIF3D, CTCF, U2AF2, and MDTH. (6) Two-sample Mendelian randomization analysis indicated that SERPINA1 exerted an inhibitory effect on osteoporosis, making it a protective factor against osteoporosis. (7) Drug enrichment analysis of SERPINA1 identified 36 drugs with a P-value < 0.05. Molecular docking revealed that 9 of these drugs had binding energies lower than -29.4 kJ/mol, with β-carotene exhibiting the strongest binding energy to SERPINA1 (-35.28 kJ/mol). The above findings confirm that ITGB3 and SERPINA1 are core genes associated with osteoporosis-exosomes. Both genes play a critical role in disease progression by participating in specific immune processes and regulating the NOD-like receptor signaling pathway. These genes exhibit precise predictive potential for the diagnosis of osteoporosis.

Key words: exosome, osteoporosis, 4D-DIA proteomics, Mendelian Randomization, machine learning algorithm, weighted correlation network analysis, predictive model, immune cell, biological function, regulatory network

中图分类号: