中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (22): 3597-3602.doi: 10.12307/2024.477

• 生物材料综述 biomaterial review • 上一篇    下一篇

聚合物基抗生素缓释载体治疗慢性骨髓炎

伊力哈木•麦麦提阿卜杜拉1,黄晓夏1,2,李璐遥1,2,滕  勇2   

  1. 1新疆医科大学研究生学院,新疆维吾尔自治区乌鲁木齐市  830017;2中国人民解放军新疆军区总医院,新疆维吾尔自治区乌鲁木齐市  830099
  • 收稿日期:2023-08-07 接受日期:2023-09-15 出版日期:2024-08-08 发布日期:2024-01-20
  • 通讯作者: 滕勇,主任医师,博士生导师,中国人民解放军新疆军区总医院脊柱外科,新疆维吾尔自治区乌鲁木齐市 830099
  • 作者简介:伊力哈木•麦麦提阿卜杜拉,男,1997年生,新疆维吾尔自治区乌鲁木齐市人,维吾尔族,新疆医科大学在读硕士,主要从事骨髓炎、骨组织工程研究。 黄晓夏,男,1994年生,福建省莆田市人,汉族,新疆医科大学在读博士,主要从事脊柱外科学、骨组织工程研究。
  • 基金资助:
    新疆维吾尔自治区自然科学基金资助项目(2023D01C93),项目负责人:滕勇;新疆维吾尔自治区区域协同创新专项(科技援疆)计划(2019E0277),项目负责人:滕勇

Polymer-based antibiotic sustained-release carrier in treatment of chronic osteomyelitis

Ilham • Maimaitiabudula1, Huang Xiaoxia1, 2, Li Luyao1, 2, Teng Yong2   

  1. 1Graduate School of Xinjiang Medical University, Urumqi 830017, Xinjiang Uygur Autonomous Region, China; 2General Hospital of Xinjiang Military Region of Chinese People’s Liberation Army, Urumqi 830099, Xinjiang Uygur Autonomous Region, China
  • Received:2023-08-07 Accepted:2023-09-15 Online:2024-08-08 Published:2024-01-20
  • Contact: Teng Yong, Chief physician, Doctoral supervisor, General Hospital of Xinjiang Military Region of Chinese People’s Liberation Army, Urumqi 830099, Xinjiang Uygur Autonomous Region, China
  • About author:Ilham • Maimaitiabudula, Master candidate, Graduate School of Xinjiang Medical University, Urumqi 830017, Xinjiang Uygur Autonomous Region, China Huang Xiaoxia, PhD candidate, Graduate School of Xinjiang Medical University, Urumqi 830017, Xinjiang Uygur Autonomous Region, China; General Hospital of Xinjiang Military Region of Chinese People’s Liberation Army, Urumqi 830099, Xinjiang Uygur Autonomous Region, China
  • Supported by:
    Natural Science Foundaton of Xinjiang Uygur Autonomous Region, No. 2023D01C93 (to TY); Xinjiang Uygur Autonomous Region Regional Collaborative Innovation Project (Technology Aid to Xinjiang), No. 2019E0277 (to TY)

摘要:


文题释义:

可生物降解抗生素缓释载体:具有一定孔隙结构的可生物降解载体系统在体内缓慢降解,同时可控速度释放抗生素类药物。其作用是将有效浓度的抗生素靶向递送到局部感染病灶部位,从而达到增加药物生物利用度的目的,提高疗效的同时减少了抗生素毒副作用,并且在缓慢降解过程中为骨再生提供结构支撑。
聚合物:包括天然高分子聚合物和人工合成高分子聚合物,在结构上与细胞外基质有机成分相似,功能上具有良好的生物相容性、可控的生物降解性、热稳定性、无毒性及易加工特性等优点,常单独或与其他材料复合制备成不同形式的药物缓释载体用于组织工程和药物递送系统。


背景:慢性骨髓炎的治疗策略中,局部抗生素缓释系统因可长期释放有效浓度的抗生素控制感染,同时能修复彻底清创后引起的骨缺损在临床中备受关注。

目的:总结可生物降解聚合物基材料制备抗生素缓释载体用于治疗骨髓炎的研究现状,并分析局限性及挑战。
方法:作者以“Polymer,Composite material,Osteomyelitis,Infectious bone defect,Drug delivery systems,Antibiotic sustained-release system,3D printing;聚合物,复合材料,骨髓炎,感染性骨缺损,药物递送系统,抗生素缓释系统,3D打印”为关键词,检索2015年1月至 2023年8月期间PubMed、Web of Science、中国知网、万方数据库中的相关文献。初检得到文章4 351篇,筛选后对87篇文章进行分析。

结果与结论:聚合物基材料因具有良好的生物相容性、生物降解性能、热稳定性及易加工性等多功能特点在抗生素缓释载体制备中得到广泛研究,但单一聚合物材料组成的抗生素缓释载体因生物力学性能不足等原因无法满足感染性骨缺损修复材料的标准。模拟天然骨组织结构形成的有机-无机复合材料型载体有望达到这个标准。3D打印技术可以精确控制载体的相互连接孔隙大小、几何形状和空间分布等,并能负载有效浓度的抗生素做到控制释放。高分子聚合物材料因具有良好的热稳定性、可塑性等优点最适合用于3D打印。因此在新型可生物降解有机-无机复合材料基础上,结合3D打印技术建立材料-结构-功能一体化的复合抗生素缓释载体因仿真模拟细胞外基质微环境有望成为慢性骨髓炎治疗中新颖的研究方向。

https://orcid.org/0009-0007-1112-696X(伊力哈木•麦麦提阿卜杜拉)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 聚合物, 复合材料, 骨髓炎, 感染性骨缺损, 药物递送系统, 抗生素缓释系统, 3D打印

Abstract: BACKGROUND: In the treatment strategy of chronic osteomyelitis, the local antibiotic slow-release system has attracted much attention in the clinic due to the long-term release of effective concentrations of antibiotics to control the infection, and at the same time, the ability to repair bone defects caused by debridement. 
OBJECTIVE: To summarize the research status of antibiotic sustained-release carriers prepared from biodegradable polymer-based materials for the treatment of osteomyelitis, and analyze the limitations and challenges.
METHODS: Chinese and English key words were “polymer, composite material, osteomyelitis, infectious bone defect, drug delivery systems, antibiotic sustained-release system, 3D printing”. Relevant articles were searched in PubMed, Web of Science, CNKI, and WanFang databases from January 2015 to August 2023. 4 351 articles were obtained in the initial examination, and 87 articles were analyzed after screening. 
RESULTS AND CONCLUSION: Polymer-based materials have been widely studied in the preparation of antibiotic sustained-release carriers due to their good biocompatibility, biodegradability, thermal stability, and easy processing. However, the antibiotic slow-release carrier composed of a single polymer material cannot meet the standard of infectious bone defect repair materials due to the lack of biomechanical properties. The organic-inorganic composite material carrier, which simulates the formation of natural bone tissue structure, is expected to meet this standard. 3D printing technology can precisely control the size, geometry, and spatial distribution of the interconnecting pores of the carrier, and can load the effective concentration of antibiotics to achieve controlled release. The polymer material is the most suitable for 3D printing because of its good thermal stability and plasticity. Therefore, the author believes that on the basis of new biodegradable organic-inorganic composite materials and combined with 3D printing technology, the material-structure-function integrated composite antibiotic slow-release carrier to simulate the extracellular matrix microenvironment is expected to become a novel research direction in the treatment of chronic osteomyelitis.

Key words: polymer, composite material, osteomyelitis, infectious bone defect, drug delivery system, antibiotic sustained-release system, 3D printing

中图分类号: