中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (25): 3988-3993.doi: 10.12307/2024.187

• 骨髓干细胞 bone marrow stem cells • 上一篇    下一篇

有氧运动预适应改善骨髓间充质干细胞治疗急性心肌梗死的效果

张  敏1,娄  国2,付常喜3   

  1. 1南京旅游职业学院,江苏省南京市   211100;2江苏经贸职业技术学院,江苏省南京市   211168;3徐州工程学院体育学院,江苏省徐州市   221008
  • 收稿日期:2023-07-04 接受日期:2023-08-11 出版日期:2024-09-08 发布日期:2023-11-23
  • 通讯作者: 付常喜,在读博士,副教授,徐州工程学院体育学院,江苏省徐州市 221008
  • 作者简介:张敏,女,1984年生,山西省运城市人,汉族,硕士,讲师,主要从事运动与健康促进方面的研究。
  • 基金资助:
    江苏省社会科学基金项目(22TYD001),项目负责人:付常喜

Aerobic exercise preconditioning improves therapeutic effect of bone marrow mesenchymal stem cells on acute myocardial infarction

Zhang Min1, Lou Guo2, Fu Changxi3   

  1. 1Nanjing Vocational College of Tourism, Nanjing 211100, Jiangsu Province, China; 2Jiangsu Vocational Institute of Commerce, Nanjing 211168, Jiangsu Province, China; 3Department of Physical Education, Xuzhou University of Technology, Xuzhou 221008, Jiangsu Province, China
  • Received:2023-07-04 Accepted:2023-08-11 Online:2024-09-08 Published:2023-11-23
  • Contact: Fu Changxi, Doctoral candidate, Associate professor, Department of Physical Education, Xuzhou University of Technology, Xuzhou 221008, Jiangsu Province, China
  • About author:Zhang Min, Master, Lecturer, Nanjing Vocational College of Tourism, Nanjing 211100, Jiangsu Province, China
  • Supported by:
    Jiangsu Provincial Social Science Foundation Project, No. 22TYD001 (to FCX)

摘要:


文题释义:

运动预适应:是一种通过运动诱导机体产生内源性保护效应的方式,在心血管保护方面发挥着重要作用,即通过反复的间歇性适宜运动,增强心肌对缺氧、缺血的耐受能力,是减少心肌缺血损伤的有效途径之一。
干细胞:是一类具有自我更新和多向分化潜能的原始细胞,来源于骨髓、胎盘、脐带、脂肪、牙髓等组织,一定条件下可分化成多种功能细胞,具有再生器官组织、治疗或改善重症疾病等多种潜在功能。


背景:干细胞疗法是急性心肌梗死后恢复受损心肌组织的替代治疗策略,运动预适应可诱导机体产生内源性心脏保护效应,然而两者联合应用的疗效及机制尚不清楚。

目的:探讨运动预适应联合骨髓间充质干细胞对急性心肌梗死大鼠治疗效果的影响及其可能机制。
方法:70只雄性SD大鼠随机分为假手术组、模型组、干细胞治疗组、运动预适应组和联合干预组。运动预适应组和联合干预组于造模前进行8周跑台有氧运动,然后通过结扎冠状动脉前降支制作急性心肌梗死模型,干细胞治疗组和联合干预组于造模后隔天尾静脉注射骨髓间充质干细胞(1×109 L-1,1 mL),治疗4周后,利用递增负荷跑台运动实验评估运动能力,超声心动图检测心脏结构与功能;分离左心室,2,3,5-氯化三苯基四氮唑染色评估心肌梗死面积,Masson染色检测胶原容积分数,CD31免疫组织化学染色检测心肌毛细血管密度,TUNEL染色检测心肌细胞凋亡情况,免疫印迹法检测基质细胞衍生因子1、CXC趋化因子受体蛋白4、肿瘤坏死因子α、白细胞介素10和血管内皮生长因子蛋白表达量。

结果与结论:①干预疗效:与假手术组比较,模型组运动能力、左心室射血分数、左心室缩短分数、CD31阳性细胞率下降(P < 0.05),心肌梗死面积、胶原容积分数和心肌细胞凋亡率增加(P < 0.05)。与模型组比较,干细胞治疗组运动能力无显著差异(P > 0.05),运动预适应组和联合干预组运动能力提高(P < 0.05);干细胞治疗组、运动预适应组、联合干预组左心室射血分数、左心室缩短分数、CD31阳性细胞率升高(P < 0.05),心肌梗死面积、胶原容积分数、心肌细胞凋亡率降低(P < 0.05)。与干细胞治疗组比较,联合干预组运动能力、左心室射血分数、左心室缩短分数、CD31阳性细胞率增加(P < 0.05),心肌梗死面积、胶原容积分数、心肌细胞凋亡率降低(P < 0.05)。②蛋白表达:与假手术组比较,模型组肿瘤坏死因子α表达升高(P < 0.05),白细胞介素10和血管内皮生长因子表达下降(P < 0.05)。与模型组比较,干细胞治疗组和联合干预组CXC趋化因子受体蛋白4表达升高(P < 0.05),干细胞治疗组、运动预适应组和联合干预组肿瘤坏死因子α表达下降(P < 0.05),白细胞介素10和血管内皮生长因子表达增加(P < 0.05)。与干细胞治疗组比较,联合干预组肿瘤坏死因子α表达降低(P < 0.05),CXC趋化因子受体蛋白4、白细胞介素10和血管内皮生长因子表达升高(P < 0.05)。结果表明:运动预适应可增强急性心肌梗死大鼠骨髓间充质干细胞治疗的效果(抑制心脏重塑、改善心功能、延缓心力衰竭进程),其机制与促进干细胞归巢、抑制炎症反应以及促进血管新生有关。

https://orcid.org/0009-0004-7298-9708 (张敏)

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 运动预适应, 急性心肌梗死, 骨髓间充质干细胞, 归巢, 心脏重塑

Abstract: BACKGROUND: Stem cell therapy is an alternative treatment strategy for restoring damaged myocardial tissue after acute myocardial infarction. Exercise preconditioning can induce endogenous cardioprotective effects in the body. However, the efficacy and mechanism of the combined application are still unclear. 
OBJECTIVE: To explore the effect and possible mechanism of exercise preconditioning combined with bone marrow mesenchymal stem cells on the therapeutic effect in rats with acute myocardial infarction.
METHODS: Seventy male SD rats were randomly divided into sham operation group, model group, stem cell therapy group, exercise preconditioning group, and combined intervention group. Rats in the exercise preconditioning group and combined intervention group underwent 8-week aerobic exercise on the treadmill before modeling. The animal model of acute myocardial infarction was made by ligating the anterior descending coronary artery. The stem cell therapy group and the combined intervention group were injected with bone marrow mesenchymal stem cells (1×109 L-1, 1 mL) through the tail vein the next day after modeling. After 4 weeks of treatment, the exercise performance was evaluated by a graded treadmill exercise test. The cardiac structure and function were detected by echocardiography. The left ventricle was isolated. 2,3,5-Triphenyltetrazolium chloride staining was used to evaluate myocardial infarct size. Masson staining was used to obtain collagen volume fraction. CD31 immunohistochemical staining was used to detect myocardial capillary density. TUNEL staining was used to detect myocardial cell apoptosis. Immunoblotting was used to detect protein expression levels of stromal cell-derived factor 1, CXC chemokine receptor protein 4, tumor necrosis factor-α, interleukin-10, and vascular endothelial growth factor. 
RESULTS AND CONCLUSION:  (1) Intervention efficacy: Compared with the sham operation group, exercise performance, left ventricular ejection fraction, left ventricular fractional shortening, and CD31 positive cell rate decreased (P < 0.05); myocardial infarct size, collagen volume fraction, and myocardial apoptotic rate increased (P < 0.05) in the model group. Compared with the model group, exercise performance was not statistically significant (P > 0.05) in the stem cell therapy group, and the exercise performance improved (P < 0.05) in the exercise preconditioning and combined intervention groups; left ventricular ejection fraction, left ventricular fractional shortening, and CD31 positive cell rate increased (P < 0.05), and the myocardial infarct size, collagen volume fraction, and cardiomyocyte apoptosis rate decreased (P < 0.05) in the stem cell therapy, exercise preconditioning, and combined intervention groups. Compared with the stem cell therapy group, exercise performance, left ventricular ejection fraction, left ventricular shortening fraction, and CD31 positive cell rate increased (P < 0.05), myocardial infarct size, collagen volume fraction, and myocardial cell apoptosis rate decreased (P < 0.05) in the combined intervention group. (2) Protein expression: Compared with the sham operation group, the expression of tumor necrosis factor-α increased (P < 0.05), while interleukin-10 and vascular endothelial growth factor expression decreased (P < 0.05) in the model group. Compared with the model group, the expression of CXC chemokine receptor protein 4 increased (P < 0.05) in the stem cell therapy group and combined intervention group, and the expression of tumor necrosis factor-α decreased (P < 0.05) while interleukin-10 and vascular endothelial growth factor increased (P < 0.05) in the stem cell therapy group, exercise preconditioning group, and combined intervention group. Compared with the stem cell therapy group, the expression of tumor necrosis factor-α decreased (P < 0.05), while CXC chemokine receptor protein 4, interleukin-10, and vascular endothelial growth factor increased (P < 0.05) in the combined intervention group. To conclude, exercise preconditioning can enhance the therapeutic effect of bone marrow mesenchymal stem cells in rats with acute myocardial infarction, which can inhibit cardiac remodeling, improve cardiac function, and delay the progress of heart failure. Its mechanism is related to the promotion of stem cell homing, inhibition of inflammatory response, and promotion of angiogenesis.

Key words: exercise preconditioning, acute myocardial infarction, bone marrow mesenchymal stem cell, homing, cardiac remodeling

中图分类号: