中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (12): 1895-1900.doi: 10.12307/2024.035

• 数字化骨科 digital orthopedics • 上一篇    下一篇

不同数值方法模拟皮质骨结构弯曲断裂的准确性

范若寻1,2,刘  杰2,贾政斌3   

  1. 1扬州工业职业技术学院,交通工程学院,江苏省扬州市   225000;2吉林化工学院,航空工程学院,吉林省吉林市   132022;3北京航空航天大学,生物与医学工程学院,北京市   100191
  • 收稿日期:2023-01-30 接受日期:2023-04-07 出版日期:2024-04-28 发布日期:2023-08-22
  • 通讯作者: 贾政斌,北京航空航天大学,生物与医学工程学院,北京市 100191
  • 作者简介:范若寻,男,1988年生,黑龙江省大庆市人,汉族,2016吉林大学毕业,博士,副教授,主要从事汽车碰撞安全与人体损伤生物力学相关研究。
  • 基金资助:
    吉林省自然科学基金项目(YDZJ202301ZYTS250),项目负责人:范若寻

Fracture accuracy on cortical bone structure under bending load using different numerical methods

Fan Ruoxun1, 2, Liu Jie2, Jia Zhengbin3   

  1. 1School of Traffic Engineering, Yangzhou Polytechnic Institute, Yangzhou 225000, Jiangsu Province, China; 2School of Aerospace Engineering, Jilin Institute of Chemical Technology, Jilin 132022, Jilin Province, China; 3School of Biomedical Engineering, Beihang University, Beijing 100191, China
  • Received:2023-01-30 Accepted:2023-04-07 Online:2024-04-28 Published:2023-08-22
  • Contact: Jia Zhengbin, School of Biomedical Engineering, Beihang University, Beijing 100191, China
  • About author:Fan Ruoxun, MD, Associate professor, School of Traffic Engineering, Yangzhou Polytechnic Institute, Yangzhou 225000, Jiangsu Province, China; School of Aerospace Engineering, Jilin Institute of Chemical Technology, Jilin 132022, Jilin Province, China
  • Supported by:
    Natural Science Foundation of Jilin Province, No. YDZJ202301ZYTS250 (to FRX)

摘要:


文题释义:

数值方法:针对某种结构进行断裂模拟的仿真分析方法。在此文中主要指能够针对大鼠股骨皮质骨结构进行断裂模拟的仿真方法,具体包括基于单元瞬时失效理论、连续损伤力学理论以及扩展有限元方法下的3种断裂模拟方法。
弯曲断裂:指大鼠股骨结构在三点弯曲载荷作用下发生断裂失效的一种破坏模式,在该失效模式下,股骨结构发生准脆性断裂,裂纹起始于股骨中部下侧区域,在弯曲载荷作用下从下向上逐渐扩展,直至裂纹完全贯穿整个中部皮质骨结构,导致结构发生整体断裂失效。


背景:当前针对皮质骨结构的断裂模拟主要有基于单元瞬时失效、连续损伤力学以及扩展有限元理论3种方法。虽然断裂模拟文献众多,但却鲜有研究比较3种断裂方法的模拟精度。

目的:探究3种数值方法模拟皮质骨结构弯曲断裂的准确性与适用性。
方法:首先针对大鼠股骨样本进行三点弯曲实验,然后依据样本微观扫描影像建立大鼠股骨有限元模型,分别采用3种数值方法模拟皮质骨结构在三点弯曲载荷下的断裂,通过将预测断裂载荷及断裂模式与实验结果进行对比,以判定各方法模拟皮质骨结构弯曲断裂的准确性。

结果与结论:①由于单元失效策略不同,3种数值方法针对同一股骨有限元模型预测所得断裂进程存在明显差异;②结果显示基于连续损伤力学理论的断裂模拟与实验结果一致性更好;③通过与实验对比可以找到更适合模拟皮质骨结构弯曲断裂的数值方法,通过观测不同数值方法预测断裂参数差异并解析差异存在的原因,能够为各数值方法确定断裂模拟的适用范围,以提高仿真精度。

https://orcid.org/0000-0002-1604-2489 (范若寻) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 皮质骨, 断裂模拟, 单元瞬时失效, 连续损伤力学, 扩展有限元

Abstract: BACKGROUND: Current fracture simulation for cortical bone structure is mainly based on three numerical methods: the element instantaneous failure, continuum damage mechanics, and extended finite element methods. Although many studies focus on cortical bone fracture simulation, few have compared the differences in prediction accuracy using the three numerical methods.
OBJECTIVE: To probe the accuracy and applicability of the three numerical methods in simulating cortical bone fracture under bending load.
METHODS: The rat femur samples were primarily used to perform the three-point bending experiment. The rat femoral finite element models were established based on the micro-CT images of the femur samples and the three numerical methods were used to conduct the fracture simulations under three-point bending loads. The predicted fracture loads and fracture patterns were compared with the experimental data to determine the accuracy of various numerical methods in simulating cortical bone fracture.
RESULTS AND CONCLUSION: (1) The discernible differences in the failure processes could be observed in the same finite element model under the three numerical simulations due to different element failure strategies. (2) The simulation results showed that the fracture simulation using the continuum damage mechanics method was in better agreement with the experimental results. (3) The numerical method that was suitable for simulating cortical bone fracture under bending load could be determined by comparing it with experimental results. The variations in the fracture parameters were observed, and the reason for the differences in the predicted results using different numerical methods was also discussed, which aided in determining the range of applicability of structural fracture simulation for each numerical method and then improving the simulation accuracy.

Key words: cortical bone, fracture simulation, element instantaneous failure, continuum damage mechanics, extended finite element

中图分类号: