中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (30): 4876-4882.doi: 10.12307/2023.503

• 生物材料综述 biomaterial review • 上一篇    下一篇

3D生物打印支架修复损伤脊髓的作用特点

酒精卫1,2,刘海峰1,2,王桂杉2,李帝均2,闫  磊1,2,赵  斌1,2,王  斌2,3   

  1. 1山西医科大学第二医院骨科,山西省太原市  030000;2骨与软组织损伤修复山西省重点实验室,山西省太原市  030000;3浙江大学医学院附属第一医院骨科,浙江省杭州市  310006
  • 收稿日期:2022-06-06 接受日期:2022-08-24 出版日期:2023-10-28 发布日期:2023-04-03
  • 通讯作者: 赵斌,博士,主任医师,山西医科大学第二医院骨科,山西省太原市 030000;骨与软组织损伤修复山西省重点实验室,山西省太原市 030000 王斌,博士,副主任医师,骨与软组织损伤修复山西省重点实验室,山西省太原市 030000;浙江大学医学院附属第一医院骨科,浙江省杭州市 310006
  • 作者简介:酒精卫,男,1998年生,山西省运城市人,汉族,山西医科大学在读硕士。 刘海峰,男,1996年生,山西省临汾市人,汉族,山西医科大学在读博士。
  • 基金资助:
    中央引导地方科技发展资金(自由探索类基础研究)(YDZX20201400001738),项目负责人:王斌;国家自然科学基金(81802204),项目负责人:王斌;山西省卫健委重大科技攻关专项(2020XM11),项目负责人:赵斌

Functional characteristics of three-dimensional biological scaffolds for repairing injured spinal cord

Jiu Jingwei1, 2, Liu Haifeng1, 2, Wang Guishan2, Li Dijun2, Yan Lei1, 2, Zhao Bin1, 2, Wang Bin2, 3   

  1. 1Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China; 2Shanxi Key Laboratory of Bone and Soft Tissue Repair, Taiyuan 030000, Shanxi Province, China; 3Department of Orthopedics, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
  • Received:2022-06-06 Accepted:2022-08-24 Online:2023-10-28 Published:2023-04-03
  • Contact: Zhao Bin, MD, Chief physician, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China; Shanxi Key Laboratory of Bone and Soft Tissue Repair, Taiyuan 030000, Shanxi Province, China Wang Bin, PhD, Associate chief physician, Shanxi Key Laboratory of Bone and Soft Tissue Repair, Taiyuan 030000, Shanxi Province, China; Department of Orthopedics, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
  • About author:Jiu Jingwei, Master candidate, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China; Shanxi Key Laboratory of Bone and Soft Tissue Repair, Taiyuan 030000, Shanxi Province, China Liu Haifeng, Doctoral candidate, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China; Shanxi Key Laboratory of Bone and Soft Tissue Repair, Taiyuan 030000, Shanxi Province, China
  • Supported by:
    the Central Government Guides Local Science and Technology Development Funds, No. YDZX20201400001738 (to WB); National Natural Science Foundation of China, No. 81802204 (to WB); Major Scientific and Technological Research Special Project of Shanxi Provincial Health Commission, No. 2020XM11 (to ZB)

摘要:


文题释义:

生物3D打印技术:使用人工生物材料、生长因子、活细胞及生物复合细胞材料等活性成分构建出具有一定生物功能甚至是完整生物功能的人工组织和器官,其主要目的是用于患者组织或器官的修复与替代。
脊髓损伤:脊髓损伤会导致损伤节段以下的肢体发生严重的功能障碍,是脊柱损伤中最严重的并发症。脊髓损伤后会发生炎症、缺血、水肿、免疫细胞浸润、脊髓空洞和胶质瘢痕化等一系列病理过程,形成不利的微环境,阻碍轴突的再生。

背景:脊髓损伤可导致不可修复的组织损伤和持续的感觉运动损伤,其治疗是一个相当大的挑战,因此一直受到临床科学家的极大关注。仿生三维支架已成为修复神经系统的有效选择。生物3D打印技术可根据个性化情况定制并快速打印出不同形状和尺寸的3D生物支架,精准控制其材料和细胞的相对空间结构,更好地模拟脊髓的相对解剖位置。
目的:总结3D生物支架在脊髓损伤后组织修复和再生领域的研究进展。
方法:以“生物3D打印、生物支架、三维支架、脊髓损伤”为中文检索词在中国知网和万方数据库进行检索,以“biology 3D printing,biological scaffold,three dimensional scaffold,spinal cord injury”为英文检索词在PubMed,Web of Science,Medline和Embase数据库进行检索。收集归纳3D生物打印支架联合干细胞移植治疗脊髓损伤的相关研究,最终纳入67篇文献进行分析。

结果与结论:①生物3D打印技术可以制作出比传统生物支架的空间结构以及细胞分布更加符合脊髓组织的3D生物支架,可以更好地利用每种材料和细胞的特性使人工合成脊髓更加接近于天然脊髓组织,但是生物墨水中材料和细胞的选择仍是一大难题。②文章总结了载有不同材料和细胞的3D生物支架移植治疗脊髓损伤时所发挥的主要作用,发现胶原在减少胶质瘢痕方面的效果异常显著,同时可以减少脊髓空泡的形成;明胶具有更好的生物相容性,可以更好地保证移植细胞的存活;海藻酸盐的抗炎效果在脊髓损伤后微环境改变方面具有良好的疗效;透明质酸在促进神经分化的同时,可以更好地促进形成神经网络;壳聚糖则在血管重建上具有明显的优势。③未来对于3D生物支架对脊髓损伤不同病情不同分型分期的影响机制仍有待进一步研究。

https://orcid.org/0000-0003-1043-3849(酒精卫);https://orcid.org/0000-0002-5888-1811(刘海峰);https://orcid.org/0000-0001-5360-6725(赵斌);https://orcid.org/0000-0002-5474-1002(王斌)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 生物3D打印, 3D生物支架, 脊髓损伤, 胶原, 明胶, 海藻酸盐, 透明质酸, 壳聚糖, 间充质干细胞, 神经干细胞

Abstract: BACKGROUND: Spinal cord injury can result in irreversible tissue damage and persistent sensorimotor impairment. Treatment of spinal cord injury is a significant problem that has piqued clinical scientists’ interest. Biomimetic three-dimensional scaffolds have shown to be a viable option for nervous system repair. 3D biological scaffolds of various sizes and forms can be swiftly produced to perfectly regulate the relative spatial structure of its materials and cells, in order to better imitate the relative anatomical location of the spinal cord, using biological 3D printing.
OBJECTIVE: To summarize research progress of 3D biological scaffolds in the field of tissue repair and regeneration after spinal cord injury.
METHODS: Using the Chinese and English search terms “biology 3D printing, biological scaffold, three dimensional scaffold, spinal cord injury”, CNKI, WanFang, PubMed, Web of Science, Medline, and EMbase databases were searched for articles concerning 3D biological scaffolds combined with stem cell transplantation in the treatment of spinal cord injury. Totally 67 articles were eventually included.
RESULTS AND CONCLUSION: (1) Biological 3D printing technology can produce 3D biological scaffolds that are more consistent with spinal cord tissue than the spatial structure and cell distribution of traditional biological scaffolds. It makes better use of the properties of each material and cell to make the synthetic spinal cord more similar to natural spinal cord tissue. However, the selection of materials and cells for bio-inks remains a challenge. (2) This paper summarizes the main role of 3D biological scaffolds loaded with different materials and cells in the treatment of spinal cord injury. Collagen has an extraordinary effect on reducing glial scar and reducing the formation of spinal cord vacuoles. Gelatin has better biocompatibility, which can better ensure the survival of transplanted cells. The anti-inflammatory effect of alginate has a good effect on the microenvironment changes after spinal cord injury. Hyaluronic acid can not only promote neural differentiation but also promote the formation of neural network. Chitosan has obvious advantages in vascular reconstruction. (3) The mechanism of effects of 3D biological scaffolds in the treatment of different types and stages of spinal cord injury remains to be further studied. 

Key words: biology 3D printing, 3D biological scaffold, spinal cord injury, collagen, gelatin, alginate, hyaluronic acid, chitosan, mesenchymal stem cell, neural stem cell

中图分类号: