中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (28): 4458-4465.doi: 10.12307/2022.298

• 组织工程骨材料 tissue-engineered bone • 上一篇    下一篇

掺铕聚磷酸钙骨组织工程支架可促成骨、血管生成及抗无菌性松动

吴羽翀1,彭  旭2,余喜讯1   

  1. 1四川大学高分子科学与工程学院,四川省成都市  610065;2四川大学动物实验中心,四川省成都市  610065
  • 收稿日期:2021-02-27 接受日期:2021-03-31 出版日期:2022-10-08 发布日期:2022-03-18
  • 通讯作者: 余喜讯,教授,四川大学高分子科学与工程学院,四川省成都市 610065
  • 作者简介:吴羽翀,女,1996年生,湖南省娄底市人,汉族,四川大学在读硕士,主要从事骨科材料的合成与研究。
  • 基金资助:
    四川省重点研发计划(2019YFS0121),项目负责人:余喜讯

Osteogenesis, angiogenesis and anti-aseptic loosening of europium-doped calcium polyphosphate bone tissue engineering scaffold

Wu Yuchong1, Peng Xu2, Yu Xixun1   

  1. 1College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China; 2Laboratory Animal Center, Sichuan University, Chengdu 610065, Sichuan Province, China
  • Received:2021-02-27 Accepted:2021-03-31 Online:2022-10-08 Published:2022-03-18
  • Contact: Yu Xixun, Professor, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China
  • About author:Wu Yuchong, Master candidate, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China
  • Supported by:
    the Key Research & Development Program of Sichuan Province, No. 2019YFS0121 (to YXX)

摘要:

文题释义:
无菌性松动:人工关节无菌性松动是导致人工关节置换失败并影响其远期疗效的最重要因素,假体无菌性松动的发病机制较为复杂,其主要原因是磨损颗粒导致的假体周围骨吸收、骨溶解,最终导致假体松动。国内外研究也提出了许多其他发病理论,包括微动理论、应力遮挡理论、内毒素理论等。
掺铕聚磷酸钙:是指通过微量元素掺杂的方式将铕元素掺入聚磷酸钙内制备掺铕聚磷酸钙支架,使得支架不仅具有良好的生物相容性及生物降解性,同时兼具更高的机械强度、优良的血管生成能力和成骨特性,甚至具有抑制骨吸收的潜力,起到防治假体周围无菌性松动的作用。

背景:骨缺损修复的临床成功不仅取决于成骨作用,还与血管生成以及抑制骨吸收能力密切相关。因此,开发具有多种功能的生物支架材料尤为重要。
目的:通过微量元素掺杂的方式改善传统骨修复材料所存在的力学强度低、促血管能力不强、骨诱导能力不足等多种问题。
方法:通过高温烧结法将不同摩尔含量的铕(0%,1%,3%,5%和7%)掺入聚磷酸钙支架中,制备出多孔掺铕聚磷酸钙支架。采用红外光谱、X射线衍射分析、X射线光电子能谱分析、扫描电镜、压汞法和抗压强度测试等分析方法分别对其结构、晶型、元素组成、孔径分布及力学性能等进行表征分析。将各组支架分别与小鼠胚胎成骨细胞前体细胞和人脐静脉内皮细胞共培养,并通过细胞增殖检测、扫描电镜、激光扫描共聚焦显微镜、酶联免疫吸附法等测试对其生物学性能进行综合评估。
结果与结论:①铕的掺杂并没有改变聚磷酸钙的主链结构及其β晶型,但可将孔径分布稳定在200-400 μm内,以利于骨骼长入。②与纯聚磷酸钙支架相比,掺铕聚磷酸钙支架的晶粒结合更紧密且排列更有序,材料的机械强度显著提升。③掺铕聚磷酸钙支架表面粗糙度有利于细胞的黏附和铺展,可同时促进小鼠胚胎成骨细胞前体细胞和人脐静脉内皮细胞在支架表面的生长和增殖,其中以5%掺铕聚磷酸钙组最明显。④掺铕聚磷酸钙支架可明显刺激材料上小鼠胚胎成骨细胞前体细胞分泌碱性磷酸酶与骨桥蛋白,以及人脐静脉内皮细胞分泌血管内皮生长因子与基质金属蛋白酶9,有利于成骨细胞的增殖分化,其中以5%掺铕聚磷酸钙组最明显。⑤5%掺铕聚磷酸钙可显著上调由成骨细胞分泌的骨保护素/核因子κB受体活化因子配体比例,表现出抑制骨溶解的潜力,可起到防治无菌性松动的作用。⑥结果表明,5%掺铕聚磷酸钙支架具有加速血管生成和成骨及抑制骨吸收的潜在性能,是一种有前途的多功能生物材料。
缩略语:掺铕聚磷酸钙:europium-doped calcium polyphosphate,EuCPP

https://orcid.org/0000-0003-0774-4486 (吴羽翀) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 骨修复材料, 掺铕聚磷酸钙, 生物相容性, 促进成骨, 促血管化, 无菌性松动

Abstract: BACKGROUND: The clinical success of bone grafts depends not only on osteogenesis, but also on angiogenesis, and the ability to inhibit osteoclast-mediated bone resorption. Therefore, it is particularly important to develop bio-scaffold materials with multiple functions. 
OBJECTIVE: To improve various problems of traditional bone repair materials, such as low mechanical strength, poor vascular promoting ability, and insufficient osteoinductive ability through the doping of trace elements. 
METHODS: A series dose of Eu (0%, 1%, 3%, 5% and 7%, molar ratio) was incorporated into calcium polyphosphate scaffolds by high temperature sintering to achieve a multifunctional europium-doped calcium polyphosphate. Infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, mercury intrusion method and compressive strength test were used to characterize its structure, crystal form, element composition, pore size distribution, and mechanical properties. The europium-doped calcium polyphosphate scaffold was co-cultured with mouse embryonic osteoblast precursor cells and human umbilical vein endothelial cells. Biological performance was evaluated through cell proliferation detection, scanning electron microscope, laser scanning confocal microscope, and enzyme-linked immunosorbent assay.  
RESULTS AND CONCLUSION: (1) The doping of Eu3+ did not change the main chain structure and crystal form of calcium polyphosphate, but it could stabilize the pore size distribution within 200-400 μm, which was conducive to bone ingrowth. (2) Compared to pure calcium polyphosphate materials, the crystal grains of europium-doped calcium polyphosphate scaffolds were bonded more closely and ranged well-ordered, which were beneficial to improve mechanical strength of materials. (3) The surface roughness of europium-doped calcium polyphosphate scaffolds was conducive to cell adhesion and spreading. Mouse embryonic osteoblast precursor cells and human umbilical vein endothelial cells seeded on europium-doped calcium polyphosphate scaffolds presented better proliferation and migration, especially 5% group. (4) The secretion of four growth factors (alkaline phosphatase and osteopontin, and human umbilical vein endothelial cells secreted vascular endothelial growth factor and matrix metalloproteinase 9) from co-cultured cells seeded on europium-doped calcium polyphosphate scaffolds was enhanced, which was conducive to the proliferation and differentiation of osteoblasts, especially 5% group. (5) 5% europium-doped calcium polyphosphate significantly up-regulated the ratio of osteoprotegerin/nuclear factor kappa B receptor activator ligand from osteoblast so that it had a potential efficacy to inhibit bone resorption, thus acted as an effect of alleviating aseptic loosening. (6) The above results show that the 5% europium-doped calcium polyphosphate scaffold has the potential to accelerate angiogenesis/osteogenesis and inhibit bone resorption, which is a promising multifunctional biomaterial. 

Key words: bone repair materials, europium-doped calcium polyphosphate, biocompatibility, osteogenesis, angiogenesis, aseptic loosening

中图分类号: