中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (10): 1574-1581.doi: 10.12307/2022.206

• 材料力学及表面改性 material mechanics and surface modification • 上一篇    下一篇

3D打印聚羟基丁酸戊酸共聚酯/半水硫酸钙支架复合壳聚糖水凝胶涂层的性能

叶翔凌1,夏远军2,王波群3,康正阳4,吴  斌4   

  1. 1广州中医药大学第五临床医学院,广东省广州市  510405;2中国人民解放军南部战区总医院创伤骨科,广东省广州市  510010
  • 收稿日期:2021-03-18 修回日期:2021-03-20 接受日期:2021-05-17 出版日期:2022-04-08 发布日期:2021-10-27
  • 通讯作者: 吴斌,副主任医师,广州市番禺区第二人民医院骨科,广东省广州市 510160
  • 作者简介:叶翔凌,男,1990年生,江西省上饶市人,汉族,广州中医药大学在读博士,主要从事骨组织工程相关研究
  • 基金资助:
    广州市科技计划项目(201804010136),项目负责人:夏远军

Function on 3D printing poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium sulfate hemihydrate scaffold integrated chitosan hydrogel coating

Ye Xiangling1, Xia Yuanjun2, Wang Boqun3, Kang Zhengyang4, Wu Bin4   

  1. 1Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China; 2Department of Trauma Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, Guangdong Province, China
  • Received:2021-03-18 Revised:2021-03-20 Accepted:2021-05-17 Online:2022-04-08 Published:2021-10-27
  • Contact: Wu Bin, Associate chief physician, Department of Orthopedics, Second People’s Hospital of Guangzhou Panyu, Guangzhou 510160, Guangdong Province, China
  • About author:Ye Xiangling, Doctoral candidate, Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
  • Supported by:
    the Guangzhou Science and Technology Planning Project, No. 201804010136 (to XYJ)

摘要: 文题释义:
3D打印:也称为增材制造,属于快速成型技术的一种,其通过一系列横截面逐层构建实体。它的基本工作原理是:通过计算机预设参数,将电脑辅助设计数据送达至3D打印机,3D打印机根据计算机命令将材料逐层堆积并最终打印成实体。
聚羟基丁酸戊酸共聚酯:是一种新型高分子聚合物,它是由微生物在不平衡的条件下产生的一种生物聚酯,具有良好的生物相容性及降解性,并呈现出优异的材料改性,已作为新型医用生物材料应用于临床。
半水硫酸钙:是一种在临床上广泛应用的骨修复材料,具有良好的生物相容性、可降解性和一定的骨传导性,已被美国食品药品管理局(FDA)批准应用于临床骨缺损的治疗。

背景:聚羟基丁酸戊酸共聚酯具有良好的生物相容性及降解性,但具有强疏水性,不利于细胞的黏附、生长、迁移和分化,严重限制了其在骨组织工程领域的应用,因此有必要对其进一步改性。
目的:构建聚羟基丁酸戊酸共聚酯/半水硫酸钙/壳聚糖[poly(3-hydroxybutyrate-3-hydroxyvalerate)/calcium sulfate hemihydrate/chitosan,PHBV/CSH/CS]支架,探究其表征、模拟载药释放行为、生物安全性、体外成骨性和抗菌活性。
方法:通过熔融沉积技术制备聚羟基丁酸戊酸共聚酯支架与聚羟基丁酸戊酸共聚酯/半水硫酸钙支架(半水硫酸钙为聚羟基丁酸戊酸共聚酯用量的20%),随后将聚羟基丁酸戊酸共聚酯/半水硫酸钙支架泡在壳聚糖溶液中并烘干,烘干后的支架放入超纯水中形成壳聚糖水凝胶并复合在支架表面上,制备PHBV/CSH/CS支架。观察3种支架的表面形貌、细胞黏附、细胞增殖情况;测试PHBV/CSH/CS支架的溶胀行为和模拟载药释放行为;利用茜素红染色评估3种支架的成骨性能;利用涂布平板法观察各组支架对标准金黄色葡萄球菌、标准大肠杆菌、临床金黄色葡萄球菌、临床大肠杆菌的抗菌能力。

结果与结论:①所制备支架具有均匀且互连的多孔立体结构,平均孔径约为 400 μm,孔隙率为60%;②PHBV/CSH/CS支架溶胀率达 56%,当使用牛血清白蛋白作为模型药物时,PHBV/CSH/CS支架载药率在1 h时达57.9%,6 h累计释放达 56.5%;③聚羟基丁酸戊酸共聚酯支架不利于细胞黏附,聚羟基丁酸戊酸共聚酯/半水硫酸钙支架改善了细胞黏附,PHBV/CSH/CS支架显著提升了细胞黏附;④3种支架均可促进骨髓间充质干细胞增殖,3组均无明显细胞毒性;⑤茜素红染色实验表明,PHBV/CSH/CS支架对于骨髓间充质干细胞矿化结节的形成作用较另外两支架强;⑥体外抗菌实验表明,PHBV/CSH/CS支架对标准金黄色葡萄球菌、标准大肠杆菌、临床金黄色葡萄球菌、临床大肠杆菌的抑制能力显著强于聚羟基丁酸戊酸共聚酯、PHBV/CSH支架(P < 0.01);⑦结果表明,相较于其他支架,PHBV/CSH/CS展现出更好的细胞黏附、成骨、抗菌性能和载药潜能。

https://orcid.org/0000-0003-4899-5433 (叶翔凌) 


关键词: 3D打印, 聚羟基丁酸戊酸共聚酯, 半水硫酸钙, 壳聚糖, 水凝胶, 生物相容性, 抗菌活性

Abstract: BACKGROUND: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was a new type of polymer with good biocompatibility and degradability. However, PHBV has strong hydrophobicity, and was not conducive to cell adhesion, growth, migration, and differentiation, which severely limits its application in the field of bone tissue engineering. Thus, it is necessary to further modify it.
OBJECTIVE: To construct PHBV/calcium sulfate hemihydrate (CSH)/chitosan (CS) scaffolds, and explore its characterization and drug release behavior, biological safety, osteogenic properties and antibacterial activity in vitro.
METHODS: PHBV and PHBV/CSH scaffolds with 20 wt% CSH content were prepared by fused deposition technology. The PHBV/CSH scaffolds were immersed in the chitosan solution and dried, and the dried scaffolds were put into ultrapure water to form a chitosan hydrogel on the surface of the scaffolds, termed the PHBV/CSH/CS scaffolds. The surface morphology, cell adhesion, and cell proliferation of PHBV, PHBV/CSH, PHBV/CSH/CS scaffolds were observed. The swelling behavior and simulated drug release behavior of the PHBV/CSH/CS scaffolds were tested. Alizarin red staining was used to evaluate the osteogenic performance of these scaffolds. The spread plate method was used to observe the antibacterial ability of each group of scaffolds against standard Staphylococcus aureus, standard Escherichia coli, clinical Staphylococcus aureus, and clinical Escherichia coli.
RESULTS AND CONCLUSION: (1) The scaffolds all had a uniform and interconnected porous three-dimensional structure, with an average pore size of about 400 μm and a porosity of 60%. (2) The swelling rate of PHBV/CSH/CS scaffold was 56%. When using bovine serum albumin as a model drug, the loading rate of PHBV/CSH/CS scaffold was 57.9% at 1 hour, and the cumulative release at 6 hours was 56.5%. (3) PHBV scaffolds were not conducive to cell adhesion. PHBV/CSH scaffolds improved cell adhesion. PHBV/CSH/CS scaffolds significantly improved cell adhesion. (4) PHBV, PHBV/CSH, PHBV/CSH/CS scaffolds could promote the proliferation of bone marrow mesenchymal stem cells, and there was no obvious cytotoxicity in the three groups. (5) Alizarin red staining experiments showed that the PHBV/CSH/CS scaffold had a stronger effect on the formation of mineralized nodules in bone marrow mesenchymal stem cells than the other two groups. (6) In vitro antibacterial experiments showed that the PHBV/CSH/CS scaffolds were significantly stronger against standard Staphylococcus aureus, standard Escherichia coli, clinical Staphylococcus aureus, and clinical Escherichia coli compared with PHBV, PHBV/CSH scaffolds (P < 0.01). (7) These results confirm that compared with other scaffolds, PHBV/CSH/CS exhibits better cell adhesion, osteogenesis, antibacterial properties and drug loading potential.

Key words: 3D printing, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), calcium sulfate hemihydrate, chitosan, hydrogel, biocompatibility, antibacterial activity

中图分类号: