中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (22): 5792-5803.doi: 10.12307/2026.180
• 组织构建综述 tissue construction review • 上一篇 下一篇
吴灵杰1,郑开元2,汪光蓉1,印 崇1,3
收稿日期:2025-06-16
接受日期:2025-08-31
出版日期:2026-08-08
发布日期:2025-12-27
通讯作者:
吴灵杰,女,1996年生,汉族,川北医学院在读硕士,主要从事分子生物学与骨质疏松症防治的研究。
作者简介:印崇,博士,副研究员,川北医学院附属医院检验科,四川省南充市 637000;川北医学院检验医学院转化医学研究中心,四川省南充市 637000
基金资助:Wu Lingjie1, Zheng Kaiyuan2, Wang Guangrong1, Yin Chong1, 3
Received:2025-06-16
Accepted:2025-08-31
Online:2026-08-08
Published:2025-12-27
Contact:
Yin Chong, PhD, Associate researcher, Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China; Translational Medicine Research Center, School of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
About author:Wu Lingjie, MS candidate, Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
Supported by:摘要:
文题释义:
miRNAs:是一种高度保守的非编码RNA分子,长度为20-25 nt,广泛存在于真核生物中(从植物、线虫到人类)。miRNAs本身不编码蛋白质,通过与靶mRNA碱基互补或不完全互补配对,切割mRNA或抑制靶mRNA翻译,以及介导mRNA脱腺苷化和衰变发挥调控作用。
骨质疏松症:是一种因骨形成与骨吸收失衡导致的代谢性骨病,严重威胁中老年人群的健康,多见于绝经后女性和老年男性。
背景:miRNA作为重要的基因转录后调控因子,在骨质疏松症的发生和发展过程中发挥着关键作用。通过对miRNA调节骨质疏松症生物学的深入探究,其潜在的疗愈机制得以揭示,此领域已成为当前研究的热门焦点。
目的:探讨miRNA在骨质疏松症发生中的调控作用及其分子机制,并对以miRNA为靶点的骨质疏松症治疗策略所遭遇的关键问题及其解决方案进行综述。
方法:以“miRNA,osteoporosis,angiogenesis,osteogenesis,gene therapy,drug delivery”为英文检索词,以“miRNA,
骨质疏松,基因治疗,核酸药物,递送载体”为中文检索词,检索PubMed、Web of Science数据库和中国知网2025年3月以前发表的文献。通过阅读文题和摘要进行初步筛选,排除相关性差、信息陈旧或观点重复且缺乏权威性的文献,最后纳入138篇文献进行综述。
结果与结论:①miRNA是一种高效的、应用范围广泛、可精准调控细胞活动的非编码RNA,在调控骨细胞功能与骨血管生成方面展现出显著的优势,在骨质疏松症的治疗中具有潜在价值;②尽管基于miRNA的靶向治疗药物在其他疾病领域已进入临床前研究阶段,但在临床转化过程中,仍面临核酸体内稳定性不足及脱靶效应的挑战;③针对miRNA疗法所面临的挑战,研究者们提出了多种应对策略,包括精准定位miRNA的靶基因降低脱靶效应;化学修饰提高核酸药物在体内的稳定性;降低核酸生产成本推进研究;利用病毒载体、外泌体和各类生物材料优化核酸药物的递送途径;④科技的进步在提升核酸药物载体性能上持续创新,未来终将达到精确而高效的药物递送及靶向治疗
效果。
https://orcid.org/0000-0002-8113-8911 (印崇)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
吴灵杰, 郑开元, 汪光蓉, 印 崇. miRNA靶向治疗骨质疏松症的应用策略[J]. 中国组织工程研究, 2026, 30(22): 5792-5803.
Wu Lingjie, Zheng Kaiyuan, Wang Guangrong, Yin Chong . Strategies for the application of miRNA-targeted therapy in the treatment of osteoporosis[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(22): 5792-5803.







| [1] WU D, CLINE-SMITH A, SHASHKOVA E, et al. T-Cell Mediated Inflammation in Postmenopausal Osteoporosis. Front Immunol. 2021;12:687551. [2] LIANG B, BURLEY G, LIN S, et al. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett. 2022;27(1):72. [3] ADEJUYIGBE B, KALLINI J, CHIOU D, et al. Osteoporosis: Molecular Pathology, Diagnostics, and Therapeutics. Int J Mol Sci. 2023;24(19):14583. [4] SINDEL D. Osteoporosis: Spotlight on current approaches to pharmacological treatment. Turk J Phys Med Rehabil. 2023;69(2):140-152. [5] KOMATSU S, KITAI H, SUZUKI HI. Network Regulation of microRNA Biogenesis and Target Interaction. Cells. 2023;12(2):306. [6] ALEXANDRI C, DANIEL A, BRUYLANTS G, et al. The role of microRNAs in ovarian function and the transition toward novel therapeutic strategies in fertility preservation: from bench to future clinical application. Hum Reprod Update. 2020;26(2):174-196. [7] HILL M, TRAN N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14(4):dmm047662. [8] NAQVI RA, DATTA M, KHAN SH, et al. Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Semin Cell Dev Biol. 2022; 124:34-47. [9] SUGATANI T, HRUSKA KA. MicroRNA-223 is a key factor in osteoclast differentiation. J Cell Biochem. 2007;101(4):996-999. [10] EMCH MJ, WICIK Z, ASPROS KGM, et al. Estrogen-regulated miRs in bone enhance osteoblast differentiation and matrix mineralization. Mol Ther Nucleic Acids. 2023;33:28-41. [11] SHEN X, ZHU W, ZHANG P, et al. Macrophage miR-149-5p induction is a key driver and therapeutic target for BRONJ. JCI Insight. 2022;7(16):e159865. [12] DEL REAL A, RIANCHO-ZARRABEITIA L, LÓPEZ-DELGADO L, et al. Epigenetics of Skeletal Diseases. Curr Osteoporos Rep. 2018;16(3):246-255. [13] LEE RC, FEINBAUM RL, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-854. [14] ESKILDSEN T, TAIPALEENMÄKI H, STENVANG J, et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A. 2011;108(15):6139-6144. [15] KOCIJAN R, MUSCHITZ C, GEIGER E, et al. Circulating microRNA Signatures in Patients With Idiopathic and Postmenopausal Osteoporosis and Fragility Fractures. J Clin Endocrinol Metab. 2016;101(11):4125-4134. [16] INOUE K, DENG Z, CHEN Y, et al. Bone protection by inhibition of microRNA-182. Nat Commun. 2018;9(1):4108. [17] HWANG JH, PARK YS, KIM HS, et al. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice. J Control Release. 2023;355:184-198. [18] MATSUZAKI J, OCHIYA T. Circulating microRNAs and extracellular vesicles as potential cancer biomarkers: a systematic review. Int J Clin Oncol. 2017;22(3):413-420. [19] TAKIZAWA S, MATSUZAKI J, OCHIYA T. Circulating microRNAs: Challenges with their use as liquid biopsy biomarkers. Cancer Biomark. 2022;35(1):1-9. [20] CAPULLI M, PAONE R, RUCCI N. Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys. 2014;561:3-12. [21] HORITA M, FARQUHARSON C, STEPHEN LA. The role of miR-29 family in disease. J Cell Biochem. 2021;122(7):696-715. [22] OKA S, LI X, ZHANG F, et al. MicroRNA-21 facilitates osteoblast activity. Biochem Biophys Rep. 2020;25:100894. [23] XIE Y, ZHOU J, TIAN L, et al. miR-196b-5p Regulates Osteoblast and Osteoclast Differentiation and Bone Homeostasis by Targeting SEMA3A. J Bone Miner Res. 2023;38(8):1175-1191. [24] XU Y, JIN Y, HONG F, et al. MiR-664-3p suppresses osteoblast differentiation and impairs bone formation via targeting Smad4 and Osterix. J Cell Mol Med. 2021; 25(11):5025-5037. [25] WANG CG, HU YH, SU SL, et al. LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Exp Mol Med. 2020; 52(8):1310-1325. [26] XUE J, LIU L, LIU H, et al. LncRNA SNHG14 activates autophagy via regulating miR-493-5p/Mef2c axis to alleviate osteoporosis progression. Commun Biol. 2023;6(1):1120. [27] HE P, YANG Z, LI H, et al. miR-18a-5p promotes osteogenic differentiation of BMSC by inhibiting Notch2. Bone. 2024; 188:117224. [28] LI R, RUAN Q, YIN F, et al. MiR-23b-3p promotes postmenopausal osteoporosis by targeting MRC2 and regulating the Wnt/β-catenin signaling pathway. J Pharmacol Sci. 2021;145(1):69-78. [29] GU Z, XIE D, HUANG C, et al. MicroRNA-497 elevation or LRG1 knockdown promotes osteoblast proliferation and collagen synthesis in osteoporosis via TGF-β1/Smads signalling pathway. J Cell Mol Med. 2020;24(21):12619-12632. [30] MA H, LI M, JIA Z, et al. MicroRNA-455-3p promotes osteoblast differentiation via targeting HDAC2. Injury. 2022;53(11):3636-3641. [31] SONG CY, GUO Y, CHEN FY, et al. Resveratrol Promotes Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Through miR-193a/SIRT7 Axis. Calcif Tissue Int. 2022;110(1):117-130. [32] LIU J, CHANG X, DONG D. MicroRNA-181a-5p Curbs Osteogenic Differentiation and Bone Formation Partially Through Impairing Runx1-Dependent Inhibition of AIF-1 Transcription. Endocrinol Metab (Seoul). 2023;38(1):156-173. [33] WANG J, GAO Z, GAO P. MiR-133b Modulates the Osteoblast Differentiation to Prevent Osteoporosis Via Targeting GNB4. Biochem Genet. 2021;59(5):1146-1157. [34] REN LR, YAO RB, WANG SY, et al. MiR-27a-3p promotes the osteogenic differentiation by activating CRY2/ERK1/2 axis. Mol Med. 2021;27(1):43. [35] WU M, WANG H, KONG D, et al. miR-452-3p inhibited osteoblast differentiation by targeting Smad4. PeerJ. 2021;9:e12228. [36] JIN SL, BAI YM, ZHAO BY, et al. Silencing of miR-330-5p stimulates osteogenesis in bone marrow mesenchymal stem cells and inhibits bone loss in osteoporosis by activating Bgn-mediated BMP/Smad pathway. Eur Rev Med Pharmacol Sci. 2020; 24(8):4095-4102. [37] ANWAR A, SAPRA L, GUPTA N, et al. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol. 2023; 238(7):1431-1464. [38] TOBEIHA M, MOGHADASIAN MH, AMIN N, et al. RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. Biomed Res Int. 2020; 2020:6910312. [39] 赵瑞,潘静,裴雪冬,等.破骨细胞相关非编码RNA介导的表观遗传学骨质疏松研究进展[J].中国骨质疏松杂志,2024, 30(4):588-594. [40] YU L, SUI B, FAN W,et al. Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p.Extracell Vesicles. 2021;10(3):e12056. [41] HE X, ZHU L, AN L, et al. MiR-143 Inhibits Osteoclastogenesis by Targeting RANK and NF-κB and MAPK Signaling Pathways. Curr Mol Pharmacol. 2020;13(3):224-232. [42] DINESH P, KALAISELVAN S, SUJITHA S, et al. miR-506-3p alleviates uncontrolled osteoclastogenesis via repression of RANKL/NFATc1 signaling pathway. J Cell Physiol. 2020;235(12):9497-9509. [43] KONG XH, SHI SF, HU HJ, et al. MicroRNA-20a suppresses RANKL-modulated osteoclastogenesis and prevents bone erosion in mice with rheumatoid arthritis through the TLR4/p38 pathway. J Biol Regul Homeost Agents. 2021;35(3):921-931. [44] XUE HY, LIU MW, YANG G. Resveratrol suppresses lipopolysaccharide-mediated activation of osteoclast precursor RAW 264.7 cells by increasing miR-181a-5p expression. Int J Immunopathol Pharmacol. 2023;37:3946320231154995. [45] HUANG MZ, ZHUANG Y, NING X, et al. Artesunate inhibits osteoclastogenesis through the miR-503/RANK axis. Biosci Rep. 2020;40(7):BSR20194387. [46] HUANG M, WANG Y, WANG Z, et al. miR-134-5p inhibits osteoclastogenesis through a novel miR-134-5p/Itgb1/MAPK pathway. J Biol Chem. 2022;298(7):102116. [47] HUANG Y, YANG Y, WANG J, et al. miR-21-5p targets SKP2 to reduce osteoclastogenesis in a mouse model of osteoporosis. J Biol Chem. 2021;296:100617. [48] HE Y, CHEN D, GUO Q, et al. MicroRNA-151a-3p Functions in the Regulation of Osteoclast Differentiation: Significance to Postmenopausal Osteoporosis. Clin Interv Aging. 2021;16:1357-1366. [49] MOURA SR, BRAS JP, FREITAS J, et al. miR-99a in bone homeostasis: Regulating osteogenic lineage commitment and osteoclast differentiation. Bone. 2020;134:115303. [50] CHOI JH, SUNG SE, KANG KK, et al. Extracellular Vesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells Suppress RANKL-Induced Osteoclast Differentiation via miR122-5p. Biochem Genet. 2024;62(4):2830-2852. [51] ZHU J, WANG H, LIU H. Osteoclastic miR-301-b knockout reduces ovariectomy (OVX)-induced bone loss by regulating CYDR/NF-κB signaling pathway. Biochem Biophys Res Commun. 2020;529(1):35-42. [52] HAN Z, ZHAN R, CHEN S, et al. miR-181b/Oncostatin m axis inhibits prostate cancer bone metastasis via modulating osteoclast differentiation. J Cell Biochem. 2020;121(2):1664-1674. [53] LIU LL, XIAO YS, HUANG WM, et al. ATF1/miR-214-5p/ITGA7 axis promotes osteoclastogenesis to alter OVX-induced bone absorption. Mol Med. 2022;28(1):56. [54] MINAMI S, FUJII Y, YOSHIOKA Y, et al. Extracellular vesicles from mouse bone marrow macrophages-derived osteoclasts treated with zoledronic acid contain miR-146a-5p and miR-322-3p, which inhibit osteoclast function. Bone. 2025;190:117323. [55] SHANMUGAVADIVU A, BALAGANGADHARAN K, SELVAMURUGAN N. Angiogenic and osteogenic effects of flavonoids in bone regeneration. Biotechnol Bioeng. 2022;119(9):2313-2330. [56] ZHU Y, RUAN Z, LIN Z, et al. The association between CD31hiEmcnhi endothelial cells and bone mineral density in Chinese women. J Bone Miner Metab. 2019;37(6): 987-995. [57] 董晤讯,袁翰,马勇,等.骨血管生成机制与功能的研究进展[J].中国现代医学杂志,2017,27(27):51-58. [58] JIN L, LONG Y, ZHANG Q, et al. MiRNAs regulate cell communication in osteogenesis-angiogenesis coupling during bone regeneration. Mol Biol Rep. 2023;50(10):8715-8728. [59] SADOWSKA JM, ZIMINSKA M, FERREIRA C, et al. Development of miR-26a-activated scaffold to promote healing of critical-sized bone defects through angiogenic and osteogenic mechanisms. Biomaterials. 2023;303:122398. [60] NAN K, ZHANG Y, ZHANG X, et al. Exosomes from miRNA-378-modified adipose-derived stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head by enhancing angiogenesis and osteogenesis via targeting miR-378 negatively regulated suppressor of fused (Sufu). Stem Cell Res Ther. 2021;12(1):331. [61] WU D, CHANG X, TIAN J, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnology. 2021; 19(1):209. [62] QI L, HONG S, ZHAO T, et al. DNA Tetrahedron Delivering miR-21-5p Promotes Senescent Bone Defects Repair through Synergistic Regulation of Osteogenesis and Angiogenesis. Adv Healthc Mater. 2024; 13(30):e2401275. [63] HE WZ, YANG M, JIANG Y, et al. miR-188-3p targets skeletal endothelium coupling of angiogenesis and osteogenesis during ageing. Cell Death Dis. 2022;13(5):494. [64] LU GD, CHENG P, LIU T, et al. BMSC-Derived Exosomal miR-29a Promotes Angiogenesis and Osteogenesis. Front Cell Dev Biol. 2020; 8:608521. [65] ZHA X, SUN B, ZHANG R, et al. Regulatory effect of microRNA-34a on osteogenesis and angiogenesis in glucocorticoid-induced osteonecrosis of the femoral head. J Orthop Res. 2018;36(1):417-424. [66] YU X, RONG PZ, SONG MS, et al. lncRNA SNHG1 induced by SP1 regulates bone remodeling and angiogenesis via sponging miR-181c-5p and modulating SFRP1/Wnt signaling pathway. Mol Med. 2021;27(1):141. [67] OUYANG L, SUN Y, LV D, et al. miR-29cb2 promotes angiogenesis and osteogenesis by inhibiting HIF-3α in bone. iScience. 2021;25(1):103604. [68] WANG X, LI X, LI J, et al. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells. FASEB J. 2021;35(1):e21150. [69] WU F, SONG C, ZHEN G, et al. Exosomes derived from BMSCs in osteogenic differentiation promote type H blood vessel angiogenesis through miR-150-5p mediated metabolic reprogramming of endothelial cells. Cell Mol Life Sci. 2024;81(1):344. [70] CHEN Y, YU H, ZHU D, et al. miR-136-3p targets PTEN to regulate vascularization and bone formation and ameliorates alcohol-induced osteopenia. FASEB J. 2020;34(4):5348-5362. [71] HUANG CK, KAFERT-KASTING S, THUM T. Preclinical and Clinical Development of Noncoding RNA Therapeutics for Cardiovascular Disease. Circ Res. 2020; 126(5):663-678. [72] LAGGERBAUER B, ENGELHARDT S. MicroRNAs as therapeutic targets in cardiovascular disease. J Clin Invest. 2022; 132(11):e159179. [73] JIN HY, GONZALEZ-MARTIN A, MILETIC AV, et al. Transfection of microRNA Mimics Should Be Used with Caution. Front Genet. 2015;6:340. [74] LIMA JF, CERQUEIRA L, FIGUEIREDO C, et al. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol. 2018;15(3):338-352. [75] HUSSEN BM, RASUL MF, ABDULLAH SR, et al. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res. 2023;10(1):32. [76] HONG DS, KANG YK, BORAD M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122(11):1630-1637. [77] SETO AG, BEATTY X, LYNCH JM, et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol. 2018;183(3): 428-444. [78] VAN DER REE MH, DE VREE JM, STELMA F, et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet. 2017; 389(10070):709-717. [79] TÄUBEL J, HAUKE W, RUMP S, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021;42(2):178-188. [80] YUN L, WANG L, PAN Y, et al. Current status and development trend of miRNAs in osteoporosis-related research: A bibliometric analysis. Folia Histochem Cytobiol. 2021;59(4):203-211. [81] CHEN Z, HUAI Y, CHEN G, et al. MiR-138-5p Targets MACF1 to Aggravate Aging-related Bone Loss. Int J Biol Sci. 2022;18(13):4837-4852. [82] XU C, WANG Z, LIU Y, et al. Delivery of miR-15b-5p via magnetic nanoparticle-enhanced bone marrow mesenchymal stem cell-derived extracellular vesicles mitigates diabetic osteoporosis by targeting GFAP. Cell Biol Toxicol. 2024;40(1):52. [83] LEE KS, LEE J, KIM HK, et al. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p. J Extracell Vesicles. 2021;10(12):e12152. [84] TAIPALEENMÄKI H, SAITO H, SCHRÖDER S, et al. Antagonizing microRNA-19a/b augments PTH anabolic action and restores bone mass in osteoporosis in mice. EMBO Mol Med. 2022;14(11):e13617. [85] DAMMES N, PEER D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci. 2020;41(10):755-775. [86] BRILLANTE S, VOLPE M, INDRIERI A. Advances in MicroRNA Therapeutics: From Preclinical to Clinical Studies. Hum Gene Ther. 2024;35(17-18):628-648. [87] MERK DJ, PAUL L, TSIAMI F, et al. CRISPR-Cas9 screens reveal common essential miRNAs in human cancer cell lines. Genome Med. 2024;16(1):82. [88] WEN M, CONG P, ZHANG Z, et al. DeepMirTar: a deep-learning approach for predicting human miRNA targets. Bioinformatics. 2018;34(22):3781-3787. [89] JI BY, YOU ZH, WANG Y, et al. DANE-MDA: Predicting microRNA-disease associations via deep attributed network embedding. iScience. 2021;24(6):102455. [90] YOUSEF M, GOY G, BAKIR-GUNGOR B. miRModuleNet: Detecting miRNA-mRNA Regulatory Modules. Front Genet. 2022;13:767455. [91] KHVOROVA A, WATTS JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017; 35(3):238-248. [92] WANG J, TAN M, WANG Y, et al. Advances in modification and delivery of nucleic acid drugs. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023;52(4):417-428. [93] YI B, LARTER K, XI Y. CRISPR/Cas9 System to Knockdown MicroRNA In Vitro and In Vivo. Methods Mol Biol. 2021;2300:133-139. [94] CHUNG PJ, CHUNG H, OH N, et al. Efficiency of Recombinant CRISPR/rCas9-Mediated miRNA Gene Editing in Rice. Int J Mol Sci. 2020;21(24):9606. [95] SELVAKUMAR SC, PREETHI KA, ROSS K, et al. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Mol Cancer. 2022;21(1):83. [96] WANG WP, HO PY, CHEN QX, et al. Bioengineering Novel Chimeric microRNA-34a for Prodrug Cancer Therapy: High-Yield Expression and Purification, and Structural and Functional Characterization. J Pharmacol Exp Ther. 2015;354(2):131-141. [97] CHEN QX, WANG WP, ZENG S, et al. A general approach to high-yield biosynthesis of chimeric RNAs bearing various types of functional small RNAs for broad applications. Nucleic Acids Res. 2015;43(7):3857-3869. [98] YIN C, TIAN Y, YU Y, et al. miR-129-5p Inhibits Bone Formation Through TCF4. Front Cell Dev Biol. 2020;8:600641. [99] RUSESKA I, ZIMMER A. Cellular uptake and trafficking of peptide-based drug delivery systems for miRNA. Eur J Pharm Biopharm. 2023;191:189-204. [100] WANG X, MA C, RODRÍGUEZ LABRADA R, et al. Recent advances in lentiviral vectors for gene therapy. Sci China Life Sci. 2021;64(11):1842-1857. [101] AL-HEETI OM, CATHRO HP, ISON MG. Adenovirus Infection and Transplantation. Transplantation. 2022;106(5):920-927. [102] COSTA VERDERA H, KURANDA K, MINGOZZI F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther. 2020;28(3):723-746. [103] MENDELL JR, AL-ZAIDY SA, RODINO-KLAPAC LR, et al. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther. 2021;29(2):464-488. [104] WANG JH, GESSLER DJ, ZHAN W, et al. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther. 2024;9(1):78. [105] OH WT, YANG YS, XIE J, et al. WNT-modulating gene silencers as a gene therapy for osteoporosis, bone fracture, and critical-sized bone defects. Mol Ther. 2023;31(2):435-453. [106] WANG C, PAN C, YONG H, et al. Emerging non-viral vectors for gene delivery. J Nanobiotechnology. 2023;21(1):272. [107] PAUNOVSKA K, LOUGHREY D, DAHLMAN JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265-280. [108] KOYNOVA R, TENCHOV B. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes. Top Curr Chem. 2010; 296:51-93. [109] SCHOENMAKER L, WITZIGMANN D, KULKARNI JA, et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm. 2021;601:120586. [110] WANG X, LIU S, SUN Y, et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat Protoc. 2023;18(1):265-291. [111] LIU J, DANG L, LI D, et al. A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts. Biomaterials. 2015;52:148-160. [112] FAN Y, MARIOLI M, ZHANG K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal. 2021;192:113642. [113] FARJAMINEJAD S, FARJAMINEJAD R, GARCIA-GODOY F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater. 2024;15(9):241. [114] CHENTHAMARA D, SUBRAMANIAM S, RAMAKRISHNAN SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23:20. [115] FERREIRA SOARES DC, DOMINGUES SC, VIANA DB, et al. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed Pharmacother. 2020;131:110695. [116] GARCÍA-GARCÍA P, REYES R, GARCÍA-SÁNCHEZ D, et al. Nanoparticle-mediated selective Sfrp-1 silencing enhances bone density in osteoporotic mice. J Nanobiotechnology. 2022;20(1):462. [117] BEACH MA, NAYANATHARA U, GAO Y, et al. Polymeric Nanoparticles for Drug Delivery. Chem Rev. 2024;124(9):5505-5616. [118] GREENBERG ZF, GRAIM KS, HE M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev. 2023;199:114974. [119] PINNA A, TORKI BAGHBADERANI M, VIGIL HERNÁNDEZ V, et al. Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment. Acta Biomater. 2021;122:365-376. [120] KANKALA RK, HAN YH, NA J, et al. Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Adv Mater. 2020; 32(23):e1907035. [121] XIA Y, SUN J, ZHAO L, et al. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials. 2018;183:151-170. [122] KHALIFEHZADEH R, ARAMI H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci. 2020;279:102157. [123] KAWSAR M, SAHADAT HOSSAIN M, ALAM MK, et al. Synthesis of pure and doped nano-calcium phosphates using different conventional methods for biomedical applications: a review. J Mater Chem B. 2024;12(14):3376-3391. [124] MUNIR MU, SALMAN S, JAVED I, et al. Nano-hydroxyapatite as a delivery system: overview and advancements. Artif Cells Nanomed Biotechnol. 2021;49(1):717-727. [125] SHOKRI M, KHARAZIHA M, TAFTI HA, et al. Synergic role of zinc and gallium doping in hydroxyapatite nanoparticles to improve osteogenesis and antibacterial activity. Biomater Adv. 2022;134:112684. [126] ITOO AM, VEMULA SL, GUPTA MT, et al. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release. 2022;350:26-59. [127] GUPTA A, SINGH S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: Avenues and Prospects. Small. 2022;18(29): e2201462. [128] XU Y, CHEN S, ZHANG Y, et al. Antibacterial black phosphorus nanosheets for biomedical applications. J Mater Chem B. 2023;11(30):7069-7093. [129] XIANG C, TENKUMO T, OGAWA T, et al. Gene transfection achieved by utilizing antibacterial calcium phosphate nanoparticles for enhanced regenerative therapy. Acta Biomater. 2021;119:375-389. [130] SONG W, JIA P, ZHANG T, et al. Cell membrane-camouflaged inorganic nanoparticles for cancer therapy. J Nanobiotechnology. 2022;20(1):289. [131] 秦灿,梁爱玲,刘勇军.纳米载体在抗癌肽递送中的应用[J].中国生物化学与分子生物学报,2025,41(6):833-842. [132] ESCUDÉ MARTINEZ DE CASTILLA P, TONG L, HUANG C, et al. Extracellular vesicles as a drug delivery system: A systematic review of preclinical studies. Adv Drug Deliv Rev. 2021;175:113801. [133] LI X, SI Y, LIANG J, et al. Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells. J Colloid Interface Sci. 2024;672:179-199. [134] ZHANG M, HU S, LIU L, et al. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther. 2023;8(1):124. [135] WANG Y, SUN L, DONG Z, et al. Targeted inhibition of ferroptosis in bone marrow mesenchymal stem cells by engineered exosomes alleviates bone loss in smoking-related osteoporosis. Mater Today Bio. 2025;31:101501. [136] ISAAC R, REIS FCG, YING W, et al. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33(9):1744-1762. [137] LI YJ, WU JY, LIU J, et al. Artificial exosomes for translational nanomedicine. J Nanobiotechnology. 2021;19(1):242. [138] LIM HJ, KIM GW, HEO GH, et al. Nanoscale single-vesicle analysis: High-throughput approaches through AI-enhanced super-resolution image analysis. Biosens Bioelectron. 2024;263:116629. |
| [1] | 温广伟, 甄颖豪, 郑泰铿, 周淑怡, 莫国业, 周腾鹏, 李海山, 赖以毅. 异银杏素对破骨细胞分化的影响和机制[J]. 中国组织工程研究, 2026, 30(6): 1348-1358. |
| [2] | 许嘉木, 杨 城, 李玮民, 王春庆. 细胞焦亡与炎症因子在骨质疏松症发生中的作用与机制[J]. 中国组织工程研究, 2026, 30(3): 691-700. |
| [3] | 高佳斌, 李天奇, 徐 坤, 朱汉民, 周 茜, 李 微. 线粒体自噬调控破骨细胞:骨质疏松症治疗的新视角[J]. 中国组织工程研究, 2026, 30(23): 5982-5991. |
| [4] | 王 岩, 吕 浩, 胡芷苜, 周 瑶, 刘 强, 杨玉祥, 衣海茹, 王久香, 江 渟. 复方补肾活血颗粒干预骨质疏松症模型小鼠:TRIB3/β-catenin轴的作用[J]. 中国组织工程研究, 2026, 30(23): 6142-6149. |
| [5] | 韩 杰, 胡天发, 吴亚超, 农 彬, 玉开龙. 叉头框转录因子O3影响骨代谢及参与多类骨相关疾病的病理进程[J]. 中国组织工程研究, 2026, 30(22): 5770-5781. |
| [6] | 张 也, 安哲庆, 席 歆, 刘晓妍, 洪 伟, 廖 健. 载唑来膦酸可溶性微针贴片抑制脂多糖诱导破骨细胞的分化[J]. 中国组织工程研究, 2026, 30(20): 5115-5124. |
| [7] | 王馨跃, 李红丽, 郭春辉, 陈继冰, 玉 华. 卵巢早衰动物模型卵巢组织与卵巢早衰患者外周血中6种miRNAs的表达变化[J]. 中国组织工程研究, 2026, 30(18): 4675-4684. |
| [8] | 李佳音, 隋 磊, 李彦静. 微小RNA-146a调节骨代谢在骨组织工程中的应用[J]. 中国组织工程研究, 2026, 30(18): 4702-4712. |
| [9] | 王思微, 姚啸生, 戚晓楠, 王 禹, 崔海舰, 赵佳萱. 基质金属蛋白酶9介导线粒体自噬调控成骨及成肌[J]. 中国组织工程研究, 2026, 30(18): 4557-4567. |
| [10] | 赵 宇, 薛 云, 黄家俊, 吴迪友, 杨 彬, 黄俊卿. 菟丝子总黄酮抑制激素性股骨头坏死的成骨细胞凋亡[J]. 中国组织工程研究, 2026, 30(17): 4289-4298. |
| [11] | 傅璟玥, 周勤峰, 李沐哲, 马 勇, 潘娅岚, 孙 杰, 黄项阳, 郭 杨. 骨质疏松症与骨关节炎共病模型大鼠的制备与评价[J]. 中国组织工程研究, 2026, 30(17): 4299-4308. |
| [12] | 孙 龙, 吴海洋, 仝林建, 刘 睿, 杨伟光, 肖 剑, 刘立策, 孙志明. 瘦素调控骨代谢的机制[J]. 中国组织工程研究, 2026, 30(12): 3100-3108. |
| [13] | 齐 鲁, 王俊杰, 邓钦高, 王 星. 敲低Linc00052表达对成骨细胞增殖、迁移和凋亡的影响[J]. 中国组织工程研究, 2026, 30(12): 2949-2956. |
| [14] | 石腾博, 倘艳锋, 张孟瑜, 王幸飞, 李晨阳, 师锦玉, 郭超韡, 李彦州, 贺自克, 王上增. 高剂量低分子量肝素对股骨干骨折愈合的影响[J]. 中国组织工程研究, 2026, 30(12): 2957-2964. |
| [15] | 于漫亚, 崔 兴. 骨髓微环境中不同细胞对多发性骨髓瘤骨病外泌体环状RNA的贡献及相互作用[J]. 中国组织工程研究, 2026, 30(1): 101-110. |
1.1.7 检索策略 以PubMed数据库为例,见图1。
1.4 资料整合 共检索到3 863篇相关文献,其中排除3 725篇文献,实际纳入138篇文献,中文3篇,英文135篇。文献筛选流程图见图2。
近年来,核酸药物(包括siRNA、miRNA等)在疾病治疗领域取得突破性进展,其研究热点主要集中在靶向递送、化学修饰、适应证拓展及临床转化等方面。本文聚焦于miRNA调控骨代谢的分子机制(miRNA调控成骨分化、破骨分化及骨血管耦联),突出了miRNA在骨质疏松症的紧密联系。详细列举了miRNA靶向治疗所遇到的临床转化挑战与应对策略(CRISPR-Cas9编辑miRNA、化学修饰、优化递送等)。本文综述核酸药物的最新研究进展,分析当前面临的挑战,并展望未来发展方向。未来可能通过多学科交叉策略,通过智能化递送、联合疗法等措施突破miRNA靶向治疗临床转化瓶颈,为骨质疏松症提供精准干预手段。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||