中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (22): 5770-5781.doi: 10.12307/2026.182

• 组织构建综述 tissue construction review • 上一篇    下一篇

叉头框转录因子O3影响骨代谢及参与多类骨相关疾病的病理进程

韩  杰1,胡天发2,吴亚超2,农  彬2,玉开龙2   

  1. 1广西中医药大学附属瑞康医院关节与运动医学科,广西壮族自治区南宁市   530000;2广西中医药大学,广西壮族自治区南宁市   530000
  • 收稿日期:2025-06-06 接受日期:2025-09-04 出版日期:2026-08-08 发布日期:2025-12-27
  • 通讯作者: 韩杰,硕士,教授,主任医师,广西中医药大学附属瑞康医院关节与运动医学科,广西壮族自治区南宁市 530000
  • 作者简介:第一作者:韩杰,男,1981年生,广西壮族自治区合浦县人,汉族,2006年广西中医药大学毕业,硕士,教授,主任医师,主要从事脊柱与四肢退行性病变的中医药防治研究。
  • 基金资助:
    国家自然科学基金项目(82260858,82460872),项目负责人:韩杰;广西自然科学基金项目(2024GXNSFAA010243),项目负责人:韩杰;广西高水平中医药重点学科建设试点项目(桂中医药科教发[2023]13号),项目负责人:韩杰;广西中医药重点研究室建设项目(桂中医药科教发[2023]9号),项目负责人:韩杰;广西青年岐黄学者培养项目(桂中医药科教发[2022]13号),项目负责人:韩杰;广西中医药大学“岐黄工程”高层次人才团队培育项目(桂中医大党[2024]3号),项目负责人:韩杰

Forkhead box transcription factor O3 affects bone metabolism and participates in the pathological processes of various bone-related diseases

Han Jie1, Hu Tianfa2, Wu Yachao2, Nong Bin2, Yu Kailong2   

  1. 1Department of Joint and Sports Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China; 2Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China 
  • Received:2025-06-06 Accepted:2025-09-04 Online:2026-08-08 Published:2025-12-27
  • Contact: Han Jie, Department of Joint and Sports Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China
  • About author:Han Jie, MS, Professor, Chief physician, Department of Joint and Sports Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China
  • Supported by:
    National Natural Science Foundation of China, Nos. 82260858 and 82460872 (to HJ); Natural Science Foundation of Guangxi Zhuang Autonomous Region, No. 2024GXNSFAA010243 (to HJ); Pilot Project of the Construction of High-Level Key Disciplines of Traditional Chinese Medicine in Guangxi, No. GTYKEF[2023]13 (to HJ); Guangxi Key Research Office of Traditional Chinese Medicine Construction Project, No. GTYKEF[2023]9 (to HJ); Guangxi Youth Qihuang Scholars Training Project, No. GTYKEF[2022]13 (to HJ); "Qihuang Project" High-Level Talent Team Cultivation Project of Guangxi University of Chinese Medicine, No. [2024]3 (to HJ)

摘要:


文题释义:
叉头框转录因子O3:是属于叉头框转录因子O家族的一种转录因子,能够介导多种生理过程,如细胞增殖、分化和凋亡、氧化应激反应以及能量代谢过程。
骨代谢:是骨组织内部的一系列生化活动,涵盖了骨生成、骨吸收以及骨重建,这些活动对于骨骼的正常发育、维持和修复至关重要。

背景:骨代谢紊乱会引起骨相关疾病的发生,而叉头框转录因子O3可以通过调节氧化应激、自噬水平等来影响骨组织细胞增殖、分化与凋亡,调控骨代谢过程。
目的:系统性分析叉头框转录因子O3调控骨代谢及其在骨科疾病中作用机制的相关研究文献,为后续以叉头框转录因子O3为靶点治疗骨疾病的研究提供参考。
方法:以“(SU=FoxO3a OR SU=Foxo3 OR SU=Forkhead box O3 OR SU=叉头框转录因子O3) AND SU=骨”为检索句在中国知网进行检索,以“主题:(“FoxO3a”) OR 主题:(“Foxo3”) OR 主题:(“Forkhead box O3”) OR 主题:(“叉头框转录因子O3”) AND 主题:(“骨”)”为检索句在万方医学数据库进行检索;以“((FoxO3a) OR (Foxo3) OR (Forkhead box O3))AND ((bone) OR (Skeleton))”为检索句在PubMed数据库进行检索,排除陈旧、重复、质量较差以及不相关的文献,最终纳入56篇文献进行综述分析。
结果与结论:①叉头框转录因子O3与骨髓间充质干细胞:叉头框转录因子O3能够促进成骨谱系的形成,还可通过激活自噬促进早期成骨分化。同时,叉头框转录因子O3在骨髓间充质干细胞中体现抗氧化特性,保护细胞免受氧化应激诱导的衰老。②叉头框转录因子O3与成骨细胞:叉头框转录因子O3在成骨细胞中能通过干扰Wnt/β-连环蛋白通路抑制成骨,同时能激活抗氧化酶保护成熟成骨细胞。叉头框转录因子O3能促进成骨祖细胞的增殖,并通过激活自噬促进成骨分化。③叉头框转录因子O3与破骨细胞:叉头框转录因子O3表达可抵抗氧化应激和激活自噬抑制破骨细胞生成。④叉头框转录因子O3与骨细胞:叉头框转录因子O3可通过抗氧化作用保护骨细胞,还可通过抑制p16和p53信号通路和抑制衰老相关分泌表型来减少骨流失。⑤叉头框转录因子O3与软骨细胞:叉头框转录因子O3在骨关节炎中对软骨细胞起到保护作用,抑制软骨细胞分解或凋亡,促进软骨细胞外基质合成,可抑制软骨细胞肥大;然而,叉头框转录因子O3与Runt相关转录因子1在软骨细胞中高度共表达却会促进软骨祖细胞的早期软骨形成和终末肥大。⑥叉头框转录因子O3通过参与氧化应激抵抗与调控自噬等过程影响骨代谢,参与多类骨相关疾病的病理进程。
https://orcid.org/0000-0003-4736-9131 (韩杰) 


中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 叉头框转录因子O3(FoxO3a), 骨代谢, 病理机制, 成骨细胞, 破骨细胞, 软骨细胞, 信号通路, 综述

Abstract: BACKGROUND: Bone metabolism disorders can cause the occurrence of bone-related diseases, and forkhead box transcription factor O3 (FoxO3a) can affect the processes of proliferation, differentiation and apoptosis of bone tissue cells by regulating oxidative stress and autophagy levels, and thereby regulate the bone metabolism.
OBJECTIVE: To systematically analyze the relevant research literature on the regulation of bone metabolism by FoxO3a and its mechanism of action in bone diseases and to provide a reference for subsequent studies targeting FoxO3a in the treatment of bone diseases.
METHODS: Literature searches were conducted using the following strategies: CNKI (China National Knowledge Infrastructure): SU=FoxO3a OR SU=Foxo3 OR SU=Forkhead box O3 OR SU=AND SU=Forkhead box transcription factor O3) AND SU=bone; WanFang Medical Database: Subject:("FoxO3a") OR Subject:("Foxo3") OR Subject:("Forkhead box O3") OR Subject:("Forkhead box transcription factor O3") AND Subject:("bone"); PubMed: ((FoxO3a) OR (Foxo3) OR (Forkhead box O3))AND ((bone) OR (Skeleton)). Outdated, repetitive, low-quality, and irrelevant studies were excluded, and 56 articles were ultimately included for review.
RESULTS AND CONCLUSION: (1) FoxO3a and bone marrow mesenchymal stem cells: FoxO3a can promote the formation of osteogenic lineages and also facilitate early osteogenic differentiation by activating autophagy. Meanwhile, FoxO3a exhibits antioxidant properties in bone marrow mesenchymal stem cells, protecting the cells from aging induced by oxidative stress. (2) FoxO3a and osteoblasts: FoxO3a can inhibit osteogenesis in osteoblasts by interfering with the Wnt/β-catenin pathway, and at the same time activate antioxidant enzymes to protect mature osteoblasts. FoxO3a can promote the proliferation and differentiation of osteoblast progenitor cells and facilitate osteogenic differentiation by activating autophagy. (3) FoxO3a and osteoclasts: The expression of FoxO3a can resist oxidative stress and activate the autophagy process to inhibit osteoclast generation. (4) FoxO3a and bone cells: FoxO3a can protect bone cells through antioxidant effects and also reduce bone loss by inhibiting the p16 and p53 signaling pathways and increasing aging-related secretory phenotypes. (5) FoxO3a and chondrocytes: FoxO3a plays a protective role for chondrocytes in osteoarthritis, inhibits the decomposition or apoptosis of chondrocytes, promotes the synthesis of extracellular matrix in chondrocytes, and can inhibit chondrocyte hypertrophy. However, the high co-expression of FoxO3a and Runt-related transcription factor 1 in chondrocytes promotes the early cartilage formation and terminal hypertrophy of chondroprogenitor cells. (6) FoxO3a affects bone metabolism by participating in processes such as oxidative stress resistance and regulating autophagy, and is involved in the pathological processes of various bone-related diseases.


Key words: Forkhead box transcription factor O3 (FoxO3a), bone metabolism, pathological mechanism, osteoblast, osteoclast, chondrocyte, signaling pathway, review

中图分类号: