[1] LESLIE WD, BURRELL S, MORIN SN. Fracture Risk Assessment in the 2023 Osteoporosis Canada Guideline. Can Assoc Radiol J. 2025;76(3):508-518.
[2] KAHWATI LC, KISTLER CE, BOOTH G, et al. Screening for osteoporosis to prevent fractures: a systematic evidence review for the US Preventive Services Task Force. JAMA. 2025;333(6):509-531.
[3] WANG J, SHU B, TANG DZ, et al. The prevalence of osteoporosis in China, a community based cohort study of osteoporosis. Front Public Health. 2023;11:1084005.
[4] SUN Z, MA Z, CAO W, et al. Calcium-mediated mitochondrial fission and mitophagy drive glycolysis to facilitate arterivirus proliferation. PLoS Pathog. 2025;21(1):e1012872.
[5] GAO DL, LIN MR, GE N, et al. From macroautophagy to mitophagy: Unveiling the hidden role of mitophagy in gastrointestinal disorders. World J Gastroenterol. 2024;30(23):2934-2946.
[6] ZHANG K, LI Q, ZHANG Y, et al. Targeting Mitophagy as a Potential Therapeutic Approach for Age‐Related Bone Diseases. Advanced Therapeutics. 2024;7(7):2400078.
[7] ZHAO Y, CHEN G, ZHANG W, et al. Autophagy regulates hypoxia‐induced osteoclastogenesis through the HIF‐1α/BNIP3 signaling pathway. J Cell Physiol. 2012;227(2):639-648.
[8] ZACH F, POLZER F, MUELLER A, et al. p62/sequestosome 1 deficiency accelerates osteoclastogenesis in vitro and leads to Paget’s disease–like bone phenotypes in mice. J Biol Chem. 2018;293(24): 9530-9541.
[9] ZHAO SJ, KONG FQ, CAI W, et al. GIT1 contributes to autophagy in osteoclast through disruption of the binding of Beclin1 and Bcl2 under starvation condition. Cell Death Dis. 2018;9(12):1195.
[10] TONG X, GU J, SONG R, et al. Osteoprotegerin inhibit osteoclast differentiation and bone resorption by enhancing autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro. J Cell Biochem. 2019;120(2):1630-1642.
[11] XUE Y, LIANG Z, FU X, et al. IL-17A modulates osteoclast precursors’ apoptosis through autophagy-TRAF3 signaling during osteoclastogenesis. Biochem Biophys Res Commun. 2019;508(4):1088-1092.
[12] WU CH, OU CH, YEN IC, et al. 4-Acetylantroquinonol B inhibits osteoclastogenesis by inhibiting the autophagy pathway in a simulated microgravity model. Int J Mol Sci. 2020;21(18):6971.
[13] ZHU L, WANG Z, SUN X, et al. STAT3/mitophagy axis coordinates macrophage NLRP3 inflammasome activation and inflammatory bone loss. J Bone Miner Res. 2023;38(2):335-353.
[14] JEONG S, SEONG JH, KANG JH, et al. Dynamin‐related protein 1 positively regulates osteoclast differentiation and bone loss. FEBS Lett. 2021;595(1):58-67.
[15] SARKAR J, DAS M, HOWLADER MSI, et al. Epigallocatechin-3-gallate inhibits osteoclastic differentiation by modulating mitophagy and mitochondrial functions. Cell Death Dis. 2022;13(10):908.
[16] YIN J, LAI P, ZHU L, et al. Angiopoietin 1 Relieves Osteolysis by Promoting Macrophage Mitophagy Through the TBK1-SQSTM1 Pathway to Inhibit AIM2 Inflammasome-Mediated Pyroptosis. Appl Biochem Biotechnol. 2024;196(11):7908-7927.
[17] NAKATOGAWA H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020;21(8):439-458.
[18] MARINKOVIĆ M, NOVAK I. A brief overview of BNIP3L/NIX receptor‐mediated mitophagy. FEBS Open Bio. 2021;11(12):3230-3236.
[19] D’ARCY MS. Mitophagy in health and disease. Molecular mechanisms, regulatory pathways, and therapeutic implications. Apoptosis. 2024;29(9):1415-1428.
[20] LI T, QU J, HU C, et al. Macrophage migration inhibitory factor (MIF) suppresses mitophagy through disturbing the protein interaction of PINK1-Parkin in sepsis-associated acute kidney injury. Cell Death Dis. 2024;15(7):473.
[21] ONNIS A, CIANFANELLI V, CASSIOLI C, et al. The pro-oxidant adaptor p66SHC promotes B cell mitophagy by disrupting mitochondrial integrity and recruiting LC3-II. Autophagy. 2018;14(12):2117-2138.
[22] 唐恒芳.维生素K2在骨代谢及线粒体损伤修复中的作用研究[D].合肥:中国科学技术大学,2023.
[23] SHADEL GS, HORVATH TL. Mitochondrial ROS signaling in organismal homeostasis. Cell. 2015;163(3):560-569.
[24] ZHAO H, ZHANG Y, REN Y, et al. PINK1/Parkin-Mediated Mitophagy Ameliorates Mitochondrial Dysfunction in Lacrimal Gland Acinar Cells During Aging. Invest Ophthalmol Vis Sci. 2024; 65(13):12.
[25] 沈华星. PINK1/Parkin信号通路调控成骨细胞分化及机制研究[D].上海:上海大学, 2023.
[26] 张沛文,张醒醒,梁伦敏.运动介导线粒体自噬在心血管疾病中的作用[J].当代体育科技,2022,12(36):18-21.
[27] 吕毓虎,程林,张沛文,等.UNDC1介导线粒体自噬参与运动预适应心肌保护的作用机制[C]//广州体育学院,中国体育科学学会运动生理生化分会,中国体育科学学会运动医学分会.2022年第七届广州运动与健康国际学术研讨会论文集.广西师范大学体育与健康学院,2022:304-305.
[28] 张泰铭.FUNDC1通过促进线粒体自噬调控缺氧状态下帕金森病的作用及机制研究[D].沈阳:中国医科大学,2023.
[29] 罗以楠,邱俏檬,卢中秋,等.线粒体自噬中受体蛋白FUNDC1研究进展[J].医学研究生学报,2020, 33(5):537-542.
[30] ZHU Y, GU Z, SHI J, et al. Vaspin Attenuates Atrial Abnormalities by Promoting ULK1/FUNDC1‐Mediated Mitophagy. Oxid Med Cell Longev. 2022;2022(1):3187463.
[31] 张凤娟,杨薇.BNIP3L/NIX介导线粒体自噬对缺血性脑卒中作用的研究进展[J].中风与神经疾病杂志,2022,39(10):949-951.
[32] MARINKOVIĆ M, ŠPRUNG M, NOVAK I. Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery. Autophagy. 2021; 17(5):1232-1243.
[33] KANKI T, WANG K, CAO Y, et al. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell. 2009;17(1):98-109.
[34] XIA X, KATZENELL S, REINHART EF, et al. A pseudo-receiver domain in Atg32 is required for mitophagy. Autophagy. 2018;14(9): 1620-1628.
[35] KANKI T, KLIONSKY DJ. Atg32 is a tag for mitochondria degradation in yeast. Autophagy. 2009;5(8):1201-1202.
[36] MURAKAWA T, YAMAGUCHI O, HASHIMOTO A, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 2015;6(1):7527.
[37] MURAKAWA T, OKAMOTO K, OMIYA S, et al. A mammalian mitophagy receptor, Bcl2-L-13, recruits the ULK1 complex to induce mitophagy. Cell Rep. 2019;26(2): 338-345.e6.
[38] MURAKAWA T, ITO J, RUSU MC, et al. AMPK regulates Bcl2-L-13-mediated mitophagy induction for cardioprotection. Cell Rep. 2024;43(12):115001.
[39] GARCIA‐OROZCO A, MARTINEZ‐MAGAÑA I A, RIERA‐LEAL A, et al. Macrophage inhibitory factor (MIF) gene polymorphisms are associated with disease susceptibility and with circulating MIF levels in active non‐segmental vitiligo in patients from western Mexico. Mol Genet Genomic Med. 2020;8(10):e1416.
[40] WANG Y, HU Y, WANG H, et al. Deficiency of MIF accentuates overloaded compression‐induced nucleus pulposus cell oxidative damage via depressing mitophagy. Oxid Med Cell Longev. 2021;2021(1):6192498.
[41] MIYAZAWA M, TSUJI Y. Evidence for a novel antioxidant function and isoform-specific regulation of the human p66Shc gene. Mol Biol Cell. 2014;25(13):2116-2127.
[42] 王涵,于志锋.力学刺激在破骨细胞分化中的作用[J].医用生物力学,2024,39(4): 775-782.
[43] 莫亮,卫杨文祥,周月惠,等.剑叶龙血素A对破骨细胞分化影响的研究[J].中国骨质疏松杂志,2024,30(10):1405-1411.
[44] 朱汉民,王松,肖文琳,等.线粒体自噬调控骨代谢[J].中国组织工程研究,2025, 29(8):1676-1683.
[45] ZHOU H, CHEN P, ZHAO C, et al. Fraxin inhibits ovariectomized-induced bone loss and osteoclastogenesis by suppressing ROS activity. Int Immunopharmacol. 2025; 147:113871.
[46] 宋世雷.淫羊藿苷通过Ca2+-CaM/CaMKⅡ信号介导LAP及典型自噬对酒精干预下破骨细胞的影响机制研究[D].南宁:广西中医药大学,2024.
[47] 刘庆羊.PINK1/Parkin通路在骨保护素调控破骨细胞线粒体自噬中的作用机制[D].扬州:扬州大学,2019.
[48] ZHANG K, JIN D, ZHAO X, et al. HIF-1α-induced mitophagy regulates the regenerative outcomes of stem cells in fat transplantation. Cell Transplant. 2023;32: 09636897231210750.
[49] HONG Z, WANG H, ZHANG T, et al. The HIF-1/BNIP3 pathway mediates mitophagy to inhibit the pyroptosis of fibroblast-like synoviocytes in rheumatoid arthritis. Int Immunopharmacol. 2024;127:111378.
[50] JANG JS, HONG SJ, MO S, et al. PINK1 restrains periodontitis-induced bone loss by preventing osteoclast mitophagy impairment. Redox Biol. 2024;69:103023.
[51] 彭力,辜诗淇,梁木春,等.Sirt3在BMSCs成骨成脂双向命运分化调控的作用[J].四川大学学报(自然科学版),2024, 61(6):205-214.
[52] 陈亚林,秦东旭.京尼平苷介导Sirt3分子改善大鼠蛛网膜下腔出血神经损伤[J].热带医学杂志,2024,24(9):1235-1240, 1365.
[53] 盛东,殷震宇.基于SIRT3介导成骨细胞凋亡通路探讨茶多酚对骨质疏松疾病的干预研究[J].现代药物与临床, 2022, 37(7):1445-1451.
[54] RICHARDSON KK, ADAM GO, LING W, et al. Mitochondrial protein deacetylation by SIRT3 in osteoclasts promotes bone resorption with aging in female mice. Mol Metab. 2024;88:102012.
[55] GUO Y, JIA X, CUI Y, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biol. 2021;41:101915.
[56] ZHU J, TANG Y, WU Q, et al. Mechanism of participation of osteocytes in the formation of osteoclasts under hypoxia. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019; 37(5):463-468.
[57] LEE SY, KIM SJ, PARK KH, et al. Differential but complementary roles of HIF-1α and HIF-2α in the regulation of bone homeostasis. Commun Biol. 2024;7(1):892.
[58] CHENG M, LIU L, LAO Y, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget. 2016; 7(27):42274.
[59] 高敬, 邵秉一. miR-181a调控骨髓间充质干细胞中OPG水平及对破骨细胞活性的影响[J].中国细胞生物学学报, 2017,39(1):44-51.
[60] INDRIERI A, CARRELLA S, ROMANO A, et al. miR‐181a/b downregulation exerts a protective action on mitochondrial disease models . EMBO molecular medicine, 2019,11(5): e8734.doi:10.15252/emmm. 201708734
[61] 祝震亚,童蕾,陆燕群.miR-181a调控PINK1/Parkin通路对骨质疏松大鼠破骨细胞线粒体自噬的影响[J].解放军医学杂志,2022,47(6):569-578.
[62] TAKEGAHARA N, KIM H, MIZUNO H, et al. Involvement of receptor activator of nuclear factor-κB ligand (RANKL)-induced incomplete cytokinesis in the polyploidization of osteoclasts. J Biol Chem. 2016;291(7):3439-3454.
[63] XIANG Q, LI L, JI W, et al. Beyond resorption: osteoclasts as drivers of bone formation. Cell Regen. 2024;13(1):22.
[64] HUANG T, WANG Y, YU Z, et al. Effect of mitophagy in the formation of osteomorphs derived from osteoclasts. Iscience. 2023; 26(5):106682.
[65] YE F, WU A. The protective mechanism of SIRT1 in the regulation of mitochondrial biogenesis and mitochondrial autophagy in Alzheimer’s disease. J Alzheimers Dis. 2021;82(1):149-157.
[66] SUN X, HAN Y, DONG C, et al. Daming capsule protects against myocardial infarction by promoting mitophagy via the SIRT1/AMPK signaling pathway. Biomed Pharmacother. 2022;151:113162.
[67] ZHANG T, WANG L, DUAN X, et al. Sirtuins mediate mitochondrial quality control mechanisms: a novel therapeutic target for osteoporosis. Front Endocrinol. 2024; 14:1281213.
[68] BONONI G, CITI V, LAPILLO M, et al. Sirtuin 1-activating compounds: discovery of a class of thiazole-based derivatives. Molecules. 2022;27(19):6535.
[69] ISHIYAMA A, SUDA K, RAO X, et al. Angiopoietin-1 attenuates lipopolysaccharide-induced endotoxemia in a Hirschsprung’s disease murine model by improving intestinal vascular integrity: implications for treating postoperative Hirschsprung-associated enterocolitis. Pediatr Surg Int. 2024;40(1):277.
[70] HOU J, HUANG X, SHANG L, et al. Reduced angiopoietin factor 2 levels are correlated with better cardiac function and prognosis in valvular heart disease. Braz J Cardiovasc Surg. 2022;38:104-149.
[71] LANGHNOJA J, WEI X, AROUNLEUT P, et al. BIOL-17. Dissecting the expression and function of angiopoietin-1 in pediatric brain tumors. Neuro-Oncol. 2023;25(Suppl 1):i9.
[72] JEONG BC, KIM HJ, BAE IH, et al. COMP-Ang1, a chimeric form of Angiopoietin 1, enhances BMP2-induced osteoblast differentiation and bone formation. Bone. 2010;46(2):479-486.
[73] WANG R, LI H, XIE Z, et al. Development of a recombinant Ang1 variant with enhanced Tie2 binding and its application to attenuate sepsis in mice. Sci Adv. 2025;11(3):eads1796.
[74] YAO N, MA Q, YI W, et al. Ang-1 promotes tumorigenesis and mediates the anti-cancer effects of Artesunate on Choroidal melanoma via the regulation of Akt/mTOR signaling pathway. Cytokine. 2024;184: 156771.
[75] FRASCA L, SARUBBI A, LONGO F, et al. Remifentanil-Propofol-Ketamine-Based Total Intravenous Anesthesia with Spontaneous Breathing for Adult Rigid Bronchoscopy. J Clin Med. 2025;14(2):377.
[76] LAZAROU M, SLITER DA, KANE LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565):309-314.
[77] YE P, PAN G, LI Y, et al. The role of remifentanil in regulating mitochondrial autophagy in osteoclasts was investigated based on PINK1/Parkin pathway. Cell Mol Biol. 2024;70(7):186-192.
[78] LI J, FU SF, YANG Y, et al. Clinical practice of traditional Chinese medicine for the treatment of postmenopausal osteoporosis: a literature review. Climacteric. 2022;25(6): 562-569.
[79] XU W, JIANG Y, WANG N, et al. Traditional Chinese Medicine as a promising strategy for the treatment of Alzheimer’s disease complicated with osteoporosis. Front Pharmacol. 2022;13:842101.
[80] JOHN AA, XIE J, YANG YS, et al. AAV-mediated delivery of osteoblast/osteoclast-regulating miRNAs for osteoporosis therapy. Mol Ther Nucleic Acids. 2022;29:296-311.
[81] AOKI S, SHIMIZU K, ITO K. Autophagy-dependent mitochondrial function regulates osteoclast differentiation and maturation. Biochem Biophys Res Commun. 2020;527(4):874-880.
[82] SHEN J, GAO Y, DENG Y, et al. Eucommia ulmoides extract regulates oxidative stress to maintain calcium homeostasis and improve diabetic osteoporosis. Food Sci Nutr. 2024;12(10):8067-8083.
[83] SHAO Y, CHEN S, ZHOU K, et al. Network pharmacology explores the mechanisms of Eucommia ulmoides cortex against postmenopausal osteoporosis. Medicine. 2022;101(19):e29257.
[84] KIM HH, PARK SY, KIM KB, et al. A Study on the Effects of Eucommiae Cortex on Male Osteoporosis. Indian J Public Health. 2019;10(11). doi: 10.5958/0976-5506.2019.04286.4
[85] 杨波.人工虎骨粉通过AMPK对PINK 1/Parkin介导的线粒体自噬对膝骨关节炎软骨退变的研究 [D]. 兰州:甘肃中医药大学,2024.
[86] GUPTA S, CASSEL SL, SUTTERWALA FS, et al. Regulation of the NLRP3 inflammasome by autophagy and mitophagy. Immunol Rev. 2025;329(1):e13410.
[87] WU KKL, CHENG KY. A new role of the early endosome in restricting NLRP3 inflammasome via mitophagy. Autophagy. 2022;18(6):1475-1477.
[88] YANG J, ZHAO M, ZENG T, et al. Shenmai injection improves lipid metabolism in post-myocardial infarction heart failure based on network pharmacology and experimental validation. Heliyon. 2024;10(21):e38648.
[89] XU HH, JIANG ZH, HUANG CS, et al. Global metabolomic and lipidomic analysis reveals the potential mechanisms of hemolysis effect of Ophiopogonin D and Ophiopogonin D’in vivo. Chin Med. 2021;16:1-13.
[90] LU Z, WU C, ZHU M, et al. Ophiopogonin D’induces RIPK1‑dependent necroptosis in androgen‑dependent LNCaP prostate cancer cells. Int J Oncol. 2020;56(2):439-447.
[91] LEI S, FENG Y, HUANG P, et al. Ophiopogonin D′-induced mitophagy and mitochondrial damage are associated with dysregulation of the PINK1/Parkin signaling pathway in AC16 cells. Toxicology. 2022;477:153275.
[92] WANG R, GAO C, YU M, et al. Mechanistic prediction and validation of Brevilin A Therapeutic effects in Lung Cancer. BMC Complement Med Ther. 2024;24(1):214.
[93] ZHANG X, XIA Y, YANG L, et al. Brevilin A, a sesquiterpene lactone, inhibits the replication of influenza a virus in vitro and in vivo . Viruses. 2019;11(9):835.
[94] LIU R, QU Z, LIN Y, et al. Brevilin A induces cell cycle arrest and apoptosis in nasopharyngeal carcinoma. Front Pharmacol. 2019;10:594.
[95] QUE X, FAN J, CHEN D, et al. Brevilin A Inhibits Prostate Cancer Progression by Decreasing PAX5-Activated SOX4. Mol Biotechnol. 2025;67(5):2060-2071.
[96] ZHOU R, WANG Y, LIU S, et al. Brevilin A, a novel BNIP3 inhibitor suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss via impairing mitophagy and mitochondrial metabolism. Phytomedicine. 2025;143:156774.
[97] WOJDASIEWICZ P, BRODACKI S, CIEŚLICKA E, et al. Salidroside: A Promising Agent in Bone Metabolism Modulation. Nutrients. 2024;16(15):2387.
[98] MENDJARGAL A, NARMANDAKH S, ZINAMYADAR M, et al. The inhibitory effect of salidroside on RANKL-induced osteoclast formation via NFκB suppression. In Vitro Cell Dev Biol Anim. 2025;61(1):59-66.
[99] JIN Y, WANG Y, WANG C, et al. Salidroside inhibits osteoclast differentiation based on osteoblast-osteoclast interaction via HIF-1a pathway. Chin J Nat Med. 2025;23(5):572-584.
[100] YAO H, XIANG L, HUANG Y, et al. Guizhi Shaoyao Zhimu granules attenuate bone destruction in mice with collagen-induced arthritis by promoting mitophagy of osteoclast precursors to inhibit osteoclastogenesis. Phytomedicine. 2023;118:154967.
[101] HUANG Y, YAO H, TJAHJONO AW, et al. Si-Zhi Wan regulates osteoclast autophagy in osteoporosis through the AMPK signaling pathway to attenuate osteoclastogenesis. J Pharm Pharmacol. 2024;76(3):236-244.
|