[1] JOSEPH P, LEONG D, MCKEE M, et al. Reducing the global burden of cardiovascular disease, part 1. Circ Res. 2017;121(6):677-694.
[2] ARNETT DK, BLUMENTHAL RS, ALBERT MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11): 596-646.
[3] MACH F, SMULDERS YM, CARBALLO D, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol. 2022;29(1):5-115.
[4] TSAO CW, ADAY AW, ALMARZOOQ ZI, et al. Heart disease and stroke statistics—2022 update: a report from the american heart association. Circulation. 2022;145(8):153-639.
[5] TOWNSEND N, KAZAKIEWICZ D, LUCY WRIGHT F, et al. Epidemiology of cardiovascular disease in Europe. Nat Rev Cardiol. 2021;19(2):133-143.
[6] WANG H, ZHANG H, ZOU Z. Changing profiles of cardiovascular disease and risk factors in China: a secondary analysis for the Global Burden of Disease Study 2019. Chin Med J. 2023;136(20):2431-2441.
[7] 刘明波,何新叶,杨晓红,等.《中国心血管健康与疾病报告2023》概要(心血管疾病流行及介入诊疗状况)[J].中国介入心脏病学杂志,2024,32(10):541-550.
[8] MENG X, YANG J, DONG M, et al. Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol. 2015;13(3):167-179.
[9] LIEVENS D, HUNDELSHAUSEN PV. Platelets in atherosclerosis. Thromb Haemost. 2011; 106(11):827-838.
[10] LIBBY P, LICHTMAN AH, HANSSON GK. Immune Effector Mechanisms Implicated in Atherosclerosis: From Mice to Humans. Immunity. 2013;38(6):1092-1104.
[11] 李婧玉,李琦,陈畅.免疫细胞在动脉粥样硬化进程中作用的研究进展[J].药学进展,2023,47(7):542-550.
[12] 胡科丹,寇艳,邢文静,等.颈动脉超声参数、B淋巴细胞与冠心病病人斑块稳定性的关系及其对预后的评估价值[J].中西医结合心脑血管病杂志,2024,22(20): 3742-3748.
[13] IMIELA AM, MIKOŁAJCZYK TP, SIEDLIŃSKI M, et al. The Th17/treg imbalance in patients with primary hyperaldosteronism and resistant hypertension. Pol Arch Inter Med. 2021;132(3): 16171.
[14] RIDKER PM, EVERETT BM, THUREN T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Eng J Med. 2017;377(12):1119-1131.
[15] EVERETT BM, CORNEL JH, LAINSCAK M, et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation. 2019;139(10):1289-1299.
[16] BOWDEN J, HOLMES MV. Meta‐analysis and mendelian randomization: a review. Res Synth Methods. 2019;10(4):486-496.
[17] SHEEHAN NA, DIDELEZ V, BURTON PR, et al. Mendelian Randomisation and Causal Inference in Observational Epidemiology. PLoS Med. 2008;5(8):e177.
[18] SMITH GD, HEMANI G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-R98.
[19] SKRIVANKOVA VW, RICHMOND RC, WOOLF BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement. JAMA. 2021;326(16):1614.
[20] ORRÙ V, STERI M, SIDORE C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020;52(10):1036-1045.
[21] NIELSEN JB, THOROLFSDOTTIR RB, FRITSCHE LG, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 2018;50(9):1234-1239.
[22] SAKAUE S, KANAI M, TANIGAWA Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53(10):1415-1424.
[23] SHAH S, HENRY A, ROSELLI C, et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun. 2020;11(1):163.
[24] HEMANI G, ZHENG J, ELSWORTH B, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.
[25] GAO N, KONG M, LI X, et al. The Association Between Psoriasis and Risk of Cardiovascular Disease: A Mendelian Randomization Analysis. Front Immunol. 2022;13:918224.
[26] LEID J, CARRELHA J, BOUKARABILA H, et al. Primitive embryonic macrophages are required for coronary development and maturation. Circ Res. 2016;118(10):1498-1511.
[27] KRISHNASAMY K, LIMBOURG A, KAPANADZE T, et al. Blood vessel control of macrophage maturation promotes arteriogenesis in ischemia. Nat Commun. 2017;8(1):952.
[28] SATTLER S, FAIRCHILD P, WATT FM, et al. The adaptive immune response to cardiac injury—the true roadblock to effective regenerative therapies? NPJ Regen Med. 2017;2(1):19.
[29] DOMÍNGUEZ-ANDRÉS J, DOS SANTOS JC, BEKKERING S, et al. Trained immunity: adaptation within innate immune mechanisms. Physiol Rev. 2023;103(1):313-346.
[30] FERRARI I, VAGNOZZI RJ. Mechanisms and strategies for a therapeutic cardiac immune response. J Mol Cell Cardiol. 2021;158:82-88.
[31] RANJIT N. Psychosocial Factors and Inflammation in the Multi-Ethnic Study of Atherosclerosis. Arch Inter Med. 2007; 167(2):174.
[32] FROSTEGÅRD J. Immunity, atherosclerosis and cardiovascular disease. Trends Immunol. 2001;22(4):180-181.
[33] WOOLLARD KJ, GEISSMANN F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol. 2010;7(2):77-86.
[34] TALEB S. Inflammation in atherosclerosis. Arch Cardiovas Dis. 2016;109(12):708-715.
[35] MURAKATA Y, YAMAGAMI F, MURAKOSHI N, et al. Electrical, structural, and autonomic atrial remodeling underlies atrial fibrillation in inflammatory atrial cardiomyopathy. Front Cardiovas Med. 2023;9:1075358.
[36] XU L, DAI PERRARD X, PERRARD JL, et al. Foamy Monocytes Form Early and Contribute to Nascent Atherosclerosis in Mice With Hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2015;35(8): 1787-1797.
[37] WU H, GOWER RM, WANG H, et al. Functional Role of CD11c+ Monocytes in Atherogenesis Associated With Hypercholesterolemia. Circulation. 2009; 119(20):2708-2717.
[38] DEVALAPALLI AP, LESHER A, SHIEH K, et al. Increased levels of IgE and autoreactive, polyreactive IgG in wild rodents: implications for the hygiene hypothesis. Scand J Immunol. 2006;64(2):125-136.
[39] IMAI T, HIESHIMA K, HASKELL C, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997;91(4): 521-530.
[40] FONG AM, ROBINSON LA, STEEBER DA, et al. Fractalkine and CX3CR1 Mediate a Novel Mechanism of Leukocyte Capture, Firm Adhesion, and Activation under Physiologic Flow. J Exp Med. 1998;188(8): 1413-1419.
[41] LUDWIG A, WEBER C. Transmembrane chemokines: versatile ‘special agents’ in vascular inflammation. Thromb Haemost. 2007;97(5):694-703.
[42] TEUPSER D, PAVLIDES S, TAN M, et al. Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Nati Acad Sci. 2004;101(51):17795-17800.
[43] MCALLISTER TW, SPARLING MB, FLASHMAN LA, et al. Differential working memory load effects after mild traumatic brain injury. NeuroImage. 2001;14(5):1004-1012.
[44] MCDERMOTT DH, FONG AM, YANG Q, et al. Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans. J Clin Invest. 2003;111(8):1241-1250.
[45] METCALF TU, WILKINSON PA, CAMERON MJ, et al. Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists. J Immunol. 2017;199(4):1405-1417.
[46] KASHIWAGI M, IMANISHI T, TSUJIOKA H, et al. Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis. 2010;212(1):171-176.
[47] IKEJIMA H, IMANISHI T, TSUJIOKA H, et al. Upregulation of Fractalkine and Its Receptor, CX3CR1, is Associated With Coronary Plaque Rupture in Patients With Unstable Angina Pectoris. Circul J. 2010;74(2):337-345.
[48] HERRERO-FERNANDEZ B, GOMEZ-BRIS R, SOMOVILLA-CRESPO B, et al. Immunobiology of atherosclerosis: a complex net of interactions. Int J Mol Sci. 2019;20(21):5293.
[49] CHANG W, ZHU F, ZHENG H, et al. Glucagon-like peptide-1 receptor agonist dulaglutide prevents ox-LDL-induced adhesion of monocytes to human endothelial cells: an implication in the treatment of atherosclerosis. Mol Immunol. 2019;116:73-79.
[50] RAZEGHIAN-JAHROMI I, KARIMI AKHORMEH A, RAZMKHAH M, et al. Immune system and atherosclerosis: hostile or friendly relationship. Int J Immunopathol Pharmacol. 2022;36: 3946320221092188
[51] SHAYA GE, LEUCKER TM, JONES SR, et al. Coronary heart disease risk: low-density lipoprotein and beyond. Trends Cardiovasc Med. 2022;32(4):181-194
[52] WALSH R, OFFERHAUS JA, TADROS R, et al. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol. 2021; 19(3):151-167.
[53] ZENG Z, WANG K, LI Y, et al. Down-regulation of microRNA-451a facilitates the activation and proliferation of CD4+ T cells by targeting Myc in patients with dilated cardiomyopathy. J Biol Chem. 2017; 292(14):6004-6013.
[54] WU J, SUN P, CHEN Q, et al. Metabolic reprogramming orchestrates CD4+ T-cell immunological status and restores cardiac dysfunction in autoimmune induced-dilated cardiomyopathy mice. J Mol Cell Cardiol. 2019;135:134-148.
[55] SHINTANI Y, NAKAYAMA T, MASAKI A, et al. Clinical impact of the pathological quantification of myocardial fibrosis and infiltrating T lymphocytes using an endomyocardial biopsy in patients with hypertrophic cardiomyopathy. Int J Cardiol. 2022;362:110-117.
[56] KÖRÖSKÉNYI K, JUBA F, VAJDA GY. Human vascular antigen complement consumption test of hypertensive patients (preliminary report). Experientia. 1961;17(2):91-92.
[57] KIRABO A, FONTANA V, DE FARIA APC, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest. 2014;124(10):4642-4656.
[58] ITANI HA, MCMASTER WG, SALEH MA, et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension. 2016;68(1):123-132.
[59] DINGWELL LS, SHIKATANI EA, BESLA R, et al. B-cell deficiency lowers blood pressure in mice. Hypertension. 2019;73(3):561-570.
[60] CAILLON A, PARADIS P, SCHIFFRIN EL. Role of immune cells in hypertension. Br J Pharmacol. 2018;176(12):1818-1828.
[61] YOUN JC, YU HT, LIM BJ, et al. Immunosenescent CD8+ T Cells and C-X-C Chemokine Receptor Type 3 Chemokines Are Increased in Human Hypertension. Hypertension. 2013;62(1):126-133.
[62] HICKEY JW. Organization of the human intestine at single-cell resolution. Nature. 2023;619(7970):572-584.
[63] DRUMMOND GR, VINH A, GUZIK TJ, et al. Immune mechanisms of hypertension. Nat Rev Immunol, 2019;19(8):517-532.
[64] HOFMANN U, BEYERSDORF N, WEIRATHER J, et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation. 2012;125(13):1652-1663.
[65] FRIELER RA, MORTENSEN RM. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation. 2015;131(11):1019-1030.
[66] NAHRENDORF M, SWIRSKI FK. Innate immune cells in ischaemic heart disease: does myocardial infarction beget myocardial infarction? Eur Heart J. 2015;37(11):868-872.
[67] LIU L, WANG Y, CAO Z, et al. Up‐regulated TLR 4 in cardiomyocytes exacerbates heart failure after long‐term myocardial infarction. J Cell Mol Med. 2015;19(12):2728-2740.
[68] MANN DL, MCMURRAY JJ, PACKER M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation. 2004; 109(13):1594-1602.
[69] TORRE-AMIONE G, ANKER SD, BOURGE RC, et al. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet. 2008; 371(9608):228-236.
[70] BARTOLI-LEONARD F, ZIMMER J, AIKAWA E. Innate and adaptive immunity: the understudied driving force of heart valve disease. Cardiovasc Res. 2021;117(13): 2506-2542.
|