中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (6): 1549-1557.doi: 10.12307/2026.575

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    下一篇

类风湿关节炎潜在药物靶点:来自欧洲数据库的大样本分析

郭  英1,田  峰2,王春芳1   

  1. 1山西医科大学基础医学院,山西省太原市  030001;2山西医科大学口腔医院,山西省太原市  030001

  • 收稿日期:2024-12-18 接受日期:2025-03-01 出版日期:2026-02-28 发布日期:2025-07-18
  • 通讯作者: 王春芳,教授,山西医科大学基础医学院,山西省太原市 030001 共同通讯作者:田峰,实验员,山西医科大学口腔医院,山西省太原市 030001
  • 作者简介:第一作者:郭英,女,1999年生,安徽省安庆市人,汉族,在读硕士,主要从事分子生物学、干细胞、脊髓损伤及相关科研方面的研究。
  • 基金资助:
    中央政府引导地方科技发展基金项目(YDZJSX2022A056),项目负责人:王春芳;山西省高等学校科技创新项目(2023L082),项目负责人:田峰;山西省基础研究计划项目(自由探索类项目)(202203021212373),项目负责人:田峰

Potential drug targets for the treatment of rheumatoid arthritis: large sample analysis from European databases

Guo Ying1, Tian Feng2, Wang Chunfang1    

  1. 1School of Basic Medicine, 2School of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2024-12-18 Accepted:2025-03-01 Online:2026-02-28 Published:2025-07-18
  • Contact: Wang Chunfang, Professor, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China Co-corresponding author: Tian Feng, Experimentalist, School of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • About author:Guo Ying, Master candidate, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Supported by:
    Central Government Guided Local Science and Technology Development Fund, No. YDZJSX2022A056 (to WCF); Science and Technology Innovation Program for Higher Education Institutions in Shanxi Province, No. 2023L082 (to TF); Basic Research Program of Shanxi Province (Free Exploration Projects), No. 202203021212373 (to TF)

摘要:


文题释义:
孟德尔随机化:是一种利用遗传变异作为工具变量来推断暴露因素(如血浆蛋白水平)与疾病结果(如类风湿关节炎)因果关系的方法。由于遗传变异在受精时随机分配,孟德尔随机化能够有效克服混杂偏倚,提供更可靠的因果推断。
贝叶斯共定位分析:是一种统计方法,用于评估基因与表型(如疾病)之间是否共享相同的遗传变异。贝叶斯共定位通过分析多个表型数据,计算不同基因与疾病之间是否由相同的遗传变异驱动,特别适用于复杂疾病的研究,可以帮助排除水平多效性(即一个基因变异影响多个表型)和混杂效应,进而确认某些基因是否真正与疾病相关。

背景:类风湿关节炎具有复杂的遗传和环境因素,虽然观察性研究发现血浆蛋白与类风湿关节炎之间存在一定的相关性,但易受混杂因素和逆因果关系的影响,难以明确这些蛋白是否是类风湿关节炎的致病因素。
目的:通过孟德尔随机化分析血浆蛋白在类风湿关节炎发生和发展中的作用,探讨血浆蛋白作为类风湿关节炎生物标志物和治疗靶点的潜力。
方法:基于Decode数据库(由冰岛Decode Genetics公司开发,该数据库包含了冰岛人群的基因组数据)、MR-Base平台(由英国牛津大学研究团队开发,专门用于提供孟德尔随机化分析所需的遗传和表型数据)与GWAS Catalog平台(由欧洲生物信息学研究所开发,提供全球范围内的基因组广泛关联研究数据),采用大规模双样本孟德尔随机化分析,对1 553种血浆蛋白与类风湿关节炎之间的因果关系进行全面评估。通过Wald比率和逆方差加权法计算因果效应,对结果进行Bonferroni校正以调整多重检验带来的假阳性风险。为确保结果的稳健性,采用敏感性分析验证循环蛋白与类风湿关节炎之间的正向因果关系,通过贝叶斯共定位和表型扫描排除混杂效应和水平多效性。结合新的血浆蛋白数据进行外部验证,以减少偶然发现的可能性。利用DsigDB筛选与候选蛋白相关的小分子化合物,通过分子对接预测蛋白质与化合物之间的结合模式和结合能量,以确定最稳定、最可能的结合分子和作用机制。
结果与结论:①经过贝叶斯共定位和表型扫描等一系列敏感性分析后,最终确定了4种与类风湿关节炎存在可靠因果关系的血浆蛋白:FCRL3、IL6R、ICOSLG和TNFAIP3,这些蛋白的遗传效应分别为FCRL3(OR=1.12,95%CI:1.07-1.17)、IL6R(OR=0.94,95%CI:0.91-0.96)、ICOSLG(OR=2.42,95%CI:1.67-3.52)和TNFAIP3(OR=2.19,95%CI:1.88-2.56)。分子对接分析显示小分子化合物benzo[a]pyrene与这些候选蛋白的结合良好,可能作为潜在的治疗分子。②通过综合分析明确了血浆蛋白FCRL3、IL6R、ICOSLG和TNFAIP3在类风湿关节炎中的遗传因果关系,这些蛋白质不仅可作为类风湿关节炎风险筛查和疾病预防的潜在分子标志物,还为深入理解类风湿关节炎的致病机制和开发靶向治疗提供了关键候选靶点。虽然研究基于欧洲群体分析,但对中国生物医学研究具有重要借鉴意义,通过引入孟德尔随机化方法分析遗传因果关系,未来可为中国人群中的类风湿关节炎研究提供更为准确的因果推断,为本土化的风险评估和治疗策略提供理论支持。

https://orcid.org/0009-0004-3346-8651(郭英)

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 血浆蛋白, 类风湿关节炎, 孟德尔随机化, 贝叶斯共定位, 表型扫描, 分子对接, 工程化组织构建

Abstract: BACKGROUND: Rheumatoid arthritis is influenced by complex genetic and environmental factors. Although observational studies have found some correlation between plasma proteins and rheumatoid arthritis, the susceptibility to confounding and reverse causation makes it difficult to clarify whether these proteins are pathogenic factors of rheumatoid arthritis.
OBJECTIVE: To explore the potential of plasma proteins as biomarkers and therapeutic targets in rheumatoid arthritis through Mendelian randomization analysis of plasma proteins in the onset and progression of rheumatoid arthritis.
METHODS: A large-scale two-sample Mendelian randomization analysis was conducted to comprehensively assess the causal relationships between 1 553 circulating proteins and rheumatoid arthritis based on the Decode database (developed by Decode Genetics in Iceland, which contains genomic data from the Icelandic population), the MR-Base platform (developed by a team of researchers at the University of Oxford in the United Kingdom, specifically designed to provide genetic and phenotypic data for Mendelian randomization analyses), and the GWAS Catalog platform (developed by the European Institute of Bioinformatics, which provides data for genome wide association studies worldwide). The causal effects were estimated using the Wald ratio and inverse variance weighting methods, with Bonferroni correction applied to control for false positives caused by multiple testing. To ensure the robustness of the results, sensitivity analyses were performed to validate the positive causal relationship between circulating proteins and rheumatoid arthritis, and Bayesian colocalization and phenome scanning were used to exclude confounding effects and horizontal pleiotropy. Additionally, external validation was carried out using new plasma protein datasets to reduce the likelihood of false discoveries. Finally, small-molecule compounds associated with candidate proteins were identified using the Drug Signatures Database (DsigDB), and molecular docking was performed to predict the binding patterns and energies between proteins and compounds, identifying the most stable and likely binding molecules and mechanisms.
RESULTS AND CONCLUSION: (1) Sensitivity analyses, including Bayesian colocalization and phenome scanning, identified four plasma proteins with reliable causal relationships with rheumatoid arthritis: FCRL3, IL6R, ICOSLG, and TNFAIP3. Their genetic effects were estimated as follows: FCRL3 [odds ratio (OR)=1.12, 95% confidence interval (CI): 1.07–1.17], IL6R (OR=0.94, 95% CI: 0.91–0.96), ICOSLG (OR=2.42, 95% CI: 1.67–3.52), and TNFAIP3 (OR=2.19, 95% CI: 1.88–2.56). Furthermore, molecular docking analysis revealed that the small-molecule compound benzo[a]pyrene exhibited favorable binding with these candidate proteins, suggesting its potential as a therapeutic agent for rheumatoid arthritis. (2) This study provides a comprehensive analysis of the genetic causal relationships of FCRL3, IL6R, ICOSLG, and TNFAIP3 in rheumatoid arthritis. These proteins not only serve as potential molecular biomarkers for rheumatoid arthritis risk screening and disease prevention, but also offer key candidate targets for further understanding the pathogenic mechanisms of rheumatoid arthritis and developing targeted therapies. Although the study is based on European populations, its findings offer important insights for biomedical research in China. By incorporating Mendelian randomization methods to analyze genetic causality, future research on rheumatoid arthritis in the Chinese population could provide more accurate causal inferences, offering theoretical support for localized risk assessment and treatment strategies.

Key words: plasma proteins, rheumatoid arthritis, Mendelian randomization, Bayesian colocalization, phenome scanning, molecular docking, engineered tissue construction

中图分类号: