中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (30): 6416-6425.doi: 10.12307/2025.785

• 口腔组织构建 oral tissue construction • 上一篇    下一篇

上颌窦内提升不植骨与植骨即刻负重的动态应力分析

艾克丽亚•艾尼瓦尔,娜菲莎•吾普尔,白布加甫•叶力思,孜拉来•居来提,古丽再努•依布拉音,尼加提•吐尔逊   

  1. 新疆医科大学第二附属医院口腔科,新疆维吾尔自治区乌鲁木齐市  830063
  • 收稿日期:2024-07-27 接受日期:2024-10-11 出版日期:2025-10-28 发布日期:2025-03-27
  • 通讯作者: 尼加提·吐尔逊,硕士,主任医师,副教授,新疆医科大学第二附属医院口腔科,新疆维吾尔自治区乌鲁木齐市 830063
  • 作者简介:艾克丽亚·艾尼瓦尔,女,1995年生,新疆维吾尔自治区乌鲁木齐市人,维吾尔族,2021年新疆医科大学在读硕士,主要从事口腔种植修复相关技术研究。
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2021D01C362),项目负责人:尼加提·吐尔逊

Dynamic stress analysis of maxillary sinus lifting without bone grafting and with immediate loading after bone grafting

Akliya·Anwar, Nafisa·Gupur, Baibugafu·Yelisi, Zilalai·Gulaiti, Guzalnur·Emrayim, Nijat·Tursun   

  1. Department of Stomatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang Uygur Autonomous Region, China
  • Received:2024-07-27 Accepted:2024-10-11 Online:2025-10-28 Published:2025-03-27
  • Contact: Nijat·Tursun, MS, Chief physician, Associate professor, Department of Stomatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang Uygur Autonomous Region, China
  • About author:Akliya·Anwar, Master candidate, Department of Stomatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang Uygur Autonomous Region, China
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region, No. 2021D01C362 (to NT)

摘要:


文题释义:
种植修复体:是指通过精密的手术技术,将设计好的植入体安置于骨组织深部,以此作为稳固基础,进而支撑并恢复上部牙列的完整形态与功能。该系统涵盖了深植于骨组织内的种植体本身,以及与之紧密相连的修复组件,诸如修复基台、固位螺丝与修复牙冠等,其整体结构不仅协同工作以承受咀嚼力,还动态地影响着周围骨组织的健康状态与重建过程,确保修复效果的持久与稳定。
动态加载:是指受力状况与负载、冲击、振动等多种动态运动模式紧密相关,各因素间的相互作用有高度的复杂性。它涵盖了随时间呈现规律性波动的周期性载荷,以及那些无固定模式、随机变化的非周期性载荷,共同构成了动态加载环境的全面特性。
上颌窦内提升术:在种植过程中通过精确确定牙槽嵴至上颌窦底的距离,用环形钻制备种植窝,钻至接近上颌窦底1 mm左右时,选择相应直径的骨冲顶器,用缓慢轻柔的力量敲击,使局部上颌窦底黏膜和骨块提升至所需高度,可通过轻微鼓气法辅助检查窦底黏膜是否穿通,随后植入相应直径、长度的种植体,严密缝合。

背景:在口腔种植修复领域,上颌后牙区域常面临由多重因素交织导致的骨量萎缩问题,这一现象极大地提升了手术的复杂性。为了增进手术远期成功率,缓解患者承受的不适,同时追求手术流程的简化与时间的缩短,上颌窦内提升技术是无需额外植骨的即刻负重方法,已成为一种广泛应用的策略。针对不同剩余牙槽骨高度的个体情况,精准选择适宜的种植修复方案,对于确保种植体的长久稳定性和维持周围骨组织的健康水平而言,具有至关重要的决定性作用。
目的:利用三维有限元法分析不同牙槽骨剩余骨高度条件下植骨或不植骨时,上颌磨牙即刻负重模拟口腔动态咬合过程对种植体、骨组织应力分布的影响。
方法:获取1例需提升上颌窦区域行种植修复患者的锥形束CT数据,通过Mimics 21.0软件建立上颌骨模型。将颌骨模型导入Solidworks 2017软件后,分别构建上颌第一磨牙牙槽骨高度10 mm常规单冠修复体模型和牙槽骨高度7,5,3 mm植骨或不植骨单冠修复体模型。在ANSYS Workbench 17.0软件中模拟后牙动态咬合过程,分别在上颌第一磨牙功能尖颊舌斜面进行动态加载,分析不同牙槽骨高度植骨与否在即刻动态加载下周围骨组织的应力分布情况。
结果与结论:①在不同牙槽骨高度组中,种植体于咬合周期各阶段均显示应力集中于颈缘骨组织;②对于植骨与不植骨各剩余牙槽骨高度的情况,种植体周边骨应力增长最大幅度均现于第三阶段(> 0.150-0.260 s),在第四阶段(> 0.260-0.300 s)等效应力均达峰值;牙槽骨高度3 mm时,不植骨组各咬合阶段等效应力峰值均较植骨组增大;牙槽骨高度5 mm时,不植骨组在第三、四阶段周围骨应力较大;牙槽骨高度7 mm时,植骨与否对应力分布不足以引起关注;③在不植骨情况下,随剩余牙槽骨高度减少,应力分布范围扩大,最大应力范围更为集中,特别是牙槽骨高度3 mm及5 mm时,应力分布范围不仅限于种植体颈部,还扩展至上颌窦底。
https://orcid.org/0009-0008-8582-9745(艾克丽亚·艾尼瓦尔)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 牙槽骨高度, 种植修复体, 上颌窦内提升, 动态载荷, 咬合, 应力, 骨组织, 植骨, 有限元分析

Abstract: BACKGROUND: In the field of oral implant restorations, the maxillary posterior region is often confronted with bone atrophy caused by a combination of factors, a phenomenon that greatly increases the complexity of the procedure. To improve the long-term success rate of the surgery, alleviate the discomfort suffered by the patient, and at the same time pursue the simplification and shortening of the surgical process, the maxillary sinus lift technique, especially the immediate weight-bearing method without additional bone grafting, has become a widely adopted strategy. The precise selection of the appropriate implant restoration plan for each individual case with different residual alveolar bone heights is crucial and decisive for ensuring the long term stability of the implant and maintaining the healthy level of the surrounding bone tissue.
OBJECTIVE: To analyze the influence of immediate loading of maxillary molars simulating dynamic occlusion on the stress distribution of implants and bone tissue under different residual alveolar bone height conditions with or without bone grafting using three-dimensional finite element method.
METHODS: Cone-beam CT data of one patient who needed to elevate the maxillary sinus region for implant restoration were obtained, and the maxillary model was constructed by Mimics 21.0 software. After importing the maxillary model into Solidworks 2017 software, the maxillary first molar alveolar bone height of 10 mm conventional single crown restoration model was constructed 7, 5, 3 mm bone-implanted or non-bone-implanted single crown restoration model, respectively. The dynamic occlusion process of posterior teeth was simulated in ANSYS Workbench 17.0 software, and dynamic loading was carried out in the buccolingual bevel of the functional cusp of the maxillary first molar, respectively, to analyze the stress distribution of the surrounding bone tissues under the immediate dynamic loading of bone grafting with or without bone grafting at different alveolar bone heights.
RESULTS AND CONCLUSION: (1) In the groups with different residual alveolar bone heights, the implants showed stress concentration in all stages of the occlusal cycle, which was concentrated in the cervical bone tissue. (2) In the case of bone grafting and non-implanted residual alveolar bone heights, the greatest increase in peri-implant bone stress occurred in the third stage (> 0.150-0.260 s), and in the fourth stage (> 0.260-0.300 s). At the 3-mm residual alveolar bone height, the equivalent force seals for each occlusal stage of the non-implanted group were larger than those of the implanted group. The peripheral bone stress was greater in the third and fourth stages of the 5-mm non-implanted group. At the 7-mm residual alveolar bone height, implantation or no implantation was not enough to cause concern about the distribution of the stresses. (3) In the non-implant group, with the decrease of the remaining alveolar bone height, the range of stress distribution was expanded, and the range of the maximum stress concentration area was more concentrated, especially at 3 mm and 5 mm, the range of stress distribution was not only confined to the neck of the implant, but also extended to the floor of the maxillary sinus. 

Key words: alveolar bone height, implant restorations, maxillary sinus endoprosthesis, dynamic loading, occlusion, stress, bone tissue, bone graft, finite element analysis

中图分类号: