[1] MICHAEL JA, TOWNSEND GC, GREENWOOD LF, et al. Abfraction: separating fact from fiction. Aust Dent J. 2009;54(1):2-8.
[2] IGARASHI Y, YOSHIDA S, KANAZAWA E. The prevalence and morphological types of non-carious cervical lesions (NCCL) in a contemporary sample of people. Odontology. 2017;105(4):443-452.
[3] NGUYEN C, RANJITKAR S, KAIDONIS JA, et al. A qualitative assessment of non-carious cervical lesions in extracted human teeth. Aust Dent J. 2008;53(1):46-51.
[4] BARTLETT DW, SHAH P. A critical review of non-carious cervical (wear) lesions and the role of abfraction, erosion, and abrasion. J Dent Res. 2006;85(4):306-312.
[5] DU JK, WU JH, CHEN PH, et al. Influence of cavity depth and restoration of non-carious cervical root lesions on strain distribution from various loading sites. BMC Oral Health. 2020;20(1):98.
[6] GRIPPO JO, SIMRING M, COLEMAN TA. Abfraction, abrasion, biocorrosion, and the enigma of noncarious cervical lesions: a 20-year perspective. J Esthet Restor Dent. 2012;24(1):10-23.
[7] TEIXEIRA DNR, THOMAS RZ, SOARES PV, et al. Prevalence of noncarious cervical lesions among adults: A systematic review. J Dent. 2020;95:103285.
[8] LAI ZY, ZHI QH, ZHOU Y, et al. Prevalence of non-carious cervical lesions and associated risk indicators in middle-aged and elderly populations in Southern China. Chin J Dent Res. 2015;18(1):41-50.
[9] JIANG H, DU MQ, HUANG W, et al. The prevalence of and risk factors for non-carious cervical lesions in adults in Hubei Province, China. Community Dent Health. 2011;28(1):22-28.
[10] YANG J, CAI D, WANG F, et al. Non-carious cervical lesions (NCCLs) in a random sampling community population and the association of NCCLs with occlusive wear. J Oral Rehabil. 2016;43(12):960-966.
[11] 梁景平.非龋性颈部缺损的研究进展[J].中华口腔医学志,2020,55(5): 323-328.
[12] ZEOLA LF, PEREIRA FA, MACHADO AC, et al. Effects of non-carious cervical lesion size, occlusal loading and restoration on biomechanical behaviour of premolar teeth. Aust Dent J. 2016;61(4):408-417.
[13] Touré B, Faye B, Kane AW, et al. Analysis of reasons for extraction of endodontically treated teeth: a prospective study. J Endod. 2011; 37(11):1512-1515.
[14] Godas AGL, Suzuki TYU, Oliveira-Reis B, et al. Effect of glass fiber post customization on the mechanical properties of resin cement and underlying dentin. Gen Dent. 2020;68(1):72-77.
[15] Iaculli F, Rengo C, Lodato V, et al. Fracture resistance of endodontically-treated maxillary premolars restored with different type of posts and direct composite reconstructions: A systematic review and meta-analysis of in vitro studies. Dent Mater. 2021;37(9):e455-e484.
[16] KAUSHIK M, KUMAR U, SHARMA R, et al. Stress distribution in endodontically treated abfracted mandibular premolar restored with different cements and crowns: A three-dimensional finite element analysis. J Conserv Dent. 2018;21(5):557-561.
[17] 仲麒,黄雨捷,张轶凡,等.纤维桩修复上颌第一磨牙牙体缺损的三维有限元力学分析[J].上海交通大学学报,2022,42(8):042.
[18] YOON HG, OH HK, LEE DY, et al. 3-D finite element analysis of the effects of post location and loading location on stress distribution in root canals of the mandibular 1st molar. J Appl Oral Sci. 2018;26:e20160406.
[19] 沈晴昳,王冬梅,钟群,等.纤维桩复合树脂修复重度楔状缺损前磨牙的三维有限元分析[J].中国组织工程研究,2014,18(30):4777-4782.
[20] 赵凌,杨丽媛,刘翠玲,等.不同修复方法对深型楔状缺损牙应力分布影响的三维有限元分析[J].华西口腔医学杂志,2017,35(1):5.
[21] 王静,殷金萍,林华洁,等.动态载荷下不同方式修复牙重度楔状缺损有限元分析[J].上海口腔医学,2022,31(6):615-620.
[22] FEI X, WANG Z, ZHONG W, et al. Fracture resistance and stress distribution of repairing endodontically treated maxillary first premolars with severe non-carious cervical lesions. Dent Mater J. 2018;37(5):789-797.
[23] 任雨冰,侯喜朋,李文颜.不同方法修复穿髓型楔状缺损牙的抗折性比较研究[J].临床口腔医学杂志,2018,34(1):3.
[24] 唐婉娴,刘桂英.3种方法修复前磨牙楔状缺损的疗效比较[J].口腔医学,2019,39(1):4.
[25] ALMASRI M. Assessment of extracting molars and premolars after root canal treatment: A retrospective study. Saudi Dent J. 2019;31(4):487-491.
[26] ZAROW M, VADINI M, CHOJNACKA-BROZEK A, et al. Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis. Nanomaterials (Basel). 2020;10(9):1708.
[27] GULDENER KA, LANZREIN CL, SIEGRIST GULDENER BE, et al. Long-term Clinical Outcomes of Endodontically Treated Teeth Restored with or without Fiber Post-retained Single-unit Restorations. J Endod. 2017;43(2):188-193.
[28] VERRI FR, OKUMURA MHT, LEMOS CAA, et al. Three-dimensional finite element analysis of glass fiber and cast metal posts with different alloys for reconstruction of teeth without ferrule. J Med Eng Technol. 2017;41(8):644-651.
[29] ALKHATRI R, SALEH ARM, KHEDER W. Impact of post and core materials on the apical extension of root fracture in root canal treated teeth :J Mater Res Technol. 2021;10:730-737.
[30] OPASATIAN A, JEARANAIPHAISARN T. The effects of cervical lesion, endodontic access, and resin composite restoration to the fracture resistance and fracture pattern of maxillary premolars. J Dent Assoc Thai. 2018;68:270-278.
[31] LEUNG WSF, LEE AHC, LIU C, et al. Fracture Resistance of Endodontically Treated Maxillary Premolars with Non-carious Cervical Lesions Restored with Different Post Systems. Eur Endod J. 2023;8(1):65-71.
[32] KHAN SIR, RAMACHANDRAN A, ALFADLEY A, et al. Ex vivo fracture resistance of teeth restored with glass and fiber reinforced composite resin. J Mech Behav Biomed Mater. 2018;82:235-238.
[33] TANGSRIPONGKUL P, JEARANAIPHAISARN T. Resin composite core and fiber post Improved the fracture parameters of endodontically treated maxillary premolars with wedge-shaped cervical lesions. J Endod. 2020; 46(11):1733-1737.
[34] JUREMA ALB, FILGUEIRAS AT, SANTOS KA, et al. Effect of intraradicular fiber post on the fracture resistance of endodontically treated and restored anterior teeth: A systematic review and meta-analysis. J Prosthet Dent. 2022;128(1):13-24.
[35] ÖZYÜREK T, TOPKARA C, KOÇAK I, et al. Fracture strength of endodontically treated teeth restored with different fiber post and core systems. Odontology. 2020;108(4):588-595.
[36] PINTO CL, BHERING CLB, DE OLIVEIRA GR, et al. The influence of post system design and material on the biomechanical behavior of teeth with little remaining coronal structure. J Prosthodont. 2019; 28(1):e350-e356.
[37] GALLICCHIO V, LODATO V, SANTIS RD, et al. Fracture Strength and failure modes of endodontically treated premolars restored with compact and hollow composite posts subjected to cyclic fatigue. Materials (Basel). 2022;15(3):1141.
[38] DURET B, REYNAUD M, DURET F. Un nouveau concept de reconstitution corono-radiculaire, le Composipost (2) [A new concept of corono-radicular reconstruction, the Composipost (2)]. Chir Dent Fr. 1990; 60(542):69-77.
[39] ABDULJAWAD M, SAMRAN A, KADOUR J, et al. Effect of fiber posts on the fracture resistance of endodontically treated anterior teeth with cervical cavities: An in vitro study. J Prosthet Dent. 2016;116(1):80-84.
[40] MCCOY RB, ANDERSON MH, LEPE X, et al. Clinical success of class V composite resin restorations without mechanical retention. J Am Dent Assoc. 1998;129:593-599.
[41] VAN ENDE A, DE MUNCK J, LISE DP, et al. Bulk-Fill Composites: A Review of the Current Literature. J Adhes Dent. 2017;19(2):95-109.
[42] 马典,钱捷.贴面式瓷嵌体修复上颌第一前磨牙穿髓型非龋性颈部缺损的三维有限元应力分析[J]. 华西口腔医学杂志,2023,41(5): 541-553.
[43] MANNOCCI F, COWIE J. Restoration of endodontically treated teeth. Br Dent J. 2014;216(6):341-346.
[44] FAHL NJ. Direct-Indirect Class V Restorations: A Novel Approach for Treating Noncarious Cervical Lesions. J Esthet Restor Dent. 2015;27(5): 267-284.
[45] CANEPPELE TMF, MEIRELLES LCF, ROCHA RS, et al. A 2-year clinical evaluation of direct and semi-direct resin composite restorations in non-carious cervical lesions: a randomized clinical study. Clin Oral Investig. 2020;24(3):1321-1331.
[46] 李智,许永伟,高承志.整层充填流动树脂充填深楔状缺损的随机对照临床研究[J].实用口腔医学杂志,2015,31(6):5.
[47] CANALI GD, IGNÁCIO SA, RACHED RN, et al. One-year clinical evaluation of bulk-fill flowable vs. regular nanofilled composite in non-carious cervical lesions. Clin Oral Investig. 2019;23(2):889-897.
[48] ZHANG H, WANG L, HUA L, et al. Randomized controlled clinical trial of a highly filled flowable composite in non-carious cervical lesions: 3-year results. Clin Oral Investig. 2021;25(10):5955-5965.
[49] KAIDA K, KUBO S, EGOSHI T, et al. Eight-year clinical evaluation of two types of resin composite in non-carious cervical lesions. Clin Oral Investig. 2022;26(10):6327-6337.
[50] IOANNIDIS A, MÜHLEMANN S, ÖZCAN M, et al. Ultra-thin occlusal veneers bonded to enamel and made of ceramic or hybrid materials exhibit load-bearing capacities not different from conventional restorations. J Mech Behav Biomed Mater. 2019;90:433-440.
[51] LABNO P, DROBNIK K. Comparison of horizontal and vertical methods of tooth preparation for a prosthetic crown. J. Pre-Clin. Clin. Res. 2020;14(1):25-28.
[52] 张樱,张宁,赵卫芳,等.IPS e-max Press功能性(牙合)贴面抗折性和断裂模式的研究[J].安徽医科大学学报,2021,56(8):056.
[53] 张雨晴,陈如婷,武郭敏,等.[牙合]贴面的预备设计和纤维桩对穿髓型楔状缺损抗折性分析[J].安徽医科大学学报,2023,58(10):058.
[54] HUANG X, ZOU L, YAO R, et al. Effect of preparation design on the fracture behavior of ceramic occlusal veneers in maxillary premolars. J Dent. 2020;97:103346.
[55] ZAHRAN M, EL-FARAG SA, SOLTAN H, et al. Fracture load of ultrathin occlusal veneers: Effect of thickness and surface conditioning. J Mech Behav Biomed Mater. 2023;145:106030.
[56] 谭建国.牙体缺损美学修复谭建国2020观点[M].北京:科学技术文献出版社,2020. |