[1] PEPLA E, BESHARAT LK, PALAIA G, et al. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma). 2014;5(3):108-114.
[2] DALIR AE, ILBEYGI TS, ABDALI DP, et al. Strategies and challenges in the treatment of dental enamel. Cells Tissues Organs. 2023;212(6):485-498.
[3] WANG J, LIU Z, REN B, et al. Biomimetic mineralisation systems for in situ enamel restoration inspired by amelogenesis. J Mater Sci Mater Med. 2021;32(9):115.
[4] 郭飞扬,花放.正畸釉质脱矿微创治疗的研究进展[J].口腔医学研究,2021,37(4):288-291.
[5] PIESIAK-PAŃCZYSZYN D, ZAKRZEWSKI W, PISZKO A, et al. Review on fluoride varnishes currently recommended in dental prophylaxis. Polim Med. 2023;53(2):141-151.
[6] HE S, CHOONG E, DUANGTHIP D, et al. Clinical interventions with various agents to prevent early childhood caries: a systematic review with network meta-analysis. Int J Paediatr Dent. 2023;33(5):507-520.
[7] HE J, STENHAGEN I, DRAGLAND I S, et al. Preparation of a fluorinated dental resin system and its anti-adhesive properties against S. mutans. Dent Mater. 2023;39(4):402-409.
[8] HAMOUDI WK, SHAKIR ZS, ISMAIL RA, et al. The combination of laser and nanoparticles for enamel protection: an in vitro study. J Lasers Med Sci. 2021;12:e82.
[9] LUK K, NIU JY, GUTKNECHT N, et al. Preventing enamel caries using carbon dioxide laser and silver diamine fluoride. Photobiomodul Photomed Laser Surg. 2021;39(4):297-302.
[10] CASARIN HH, MATTOS VS, DE CASTRO NJ, et al. Chemical and morphological changes of femtosecond laser-irradiated enamel using subablative parameters. Microsc Res Tech. 2021;84(10):2399-2408.
[11] SOVERAL M, MACHADO V, BOTELHO J, et al. Effect of resin infiltration on enamel: a systematic review and meta-analysis. J Funct Biomater. 2021;12(3):48.
[12] IBRAHIM D, VENKITESWARAN A, HASMUN N N. The penetration depth of resin infiltration into enamel: a systematic review. J Int Soc Prev Community Dent. 2023;13(3):194-207.
[13] DAWASAZ AA, TOGOO RA, MAHMOOD Z, et al. Remineralization of dentinal lesions using biomimetic agents: a systematic review and meta-analysis. Biomimetics (Basel). 2023;8(2):159.
[14] XU J, SHI H, LUO J, et al. Advanced materials for enamel remineralization. Front Bioeng Biotechnol. 2022;10:985881.
[15] YU K, ZHANG Q, DAI Z, et al. Smart dental materials intelligently responding to oral ph to combat caries: a literature review. Polymers (Basel). 2023;15(12):2611.
[16] JAYASUDHA, BASWARAJ, Navin KN, et al. Enamel regeneration - current progress and challenges. J Clin Diagn Res. 2014,8(9):E6-E9.
[17] 李全利.牙釉质再矿化的过去、现在与未来[J].口腔材料器械杂志, 2023,32(2):77-85.
[18] JIN Y, ZHOU J, ZHAO X, et al. When 2D nanomaterials meet biomolecules: design strategies and hybrid nanostructures for bone tissue engineering. J Mater Chem B. 2022;10(44):9040-9053.
[19] SMITH CE, HU Y, HU JC, et al. Ultrastructure of early amelogenesis in wild-type, Amelx(-/-), and Enam(-/-) mice: enamel ribbon initiation on dentin mineral and ribbon orientation by ameloblasts. Mol Genet Genomic Med.2016;4(6):662-683.
[20] JOKISAARI JR, WANG C, QIAO Q, et al. Particle-attachment-mediated and matrix/lattice-guided enamel apatite crystal growth. ACS Nano. 2019;13(3):3151-3161.
[21] RUAN Q, MORADIAN-OLDAK J. Amelogenin and enamel biomimetics. J Mater Chem B. 2015;3:3112-3129.
[22] WARSHAWSKY H, JOSEPHSEN K, THYLSTRUP A, et al. The development of enamel structure in rat incisors as compared to the teeth of monkey and man. Anat Rec. 1981;200(4):371-399.
[23] PRAJAPATI S, RUAN Q, MUKHERJEE K, et al. The presence of MMP-20 reinforces biomimetic enamel regrowth. J Dent Res. 2018;97(1):84-90.
[24] LI H, HU X, ZEN A, et al. Transcriptomic network regulation of rat tooth germ from bell differentiation stage to secretory stage: MAPK signaling pathway is crucial to extracellular matrix remodeling. Biomed Res Int. 2023;2023:4038278.
[25] ABDALLA MM, BIJLE MN, ABDALLAH N, et al. Enamel remineralization potential and antimicrobial effect of a fluoride varnish containing calcium strontium silicate. J Dent. 2023;138:104731.
[26] WANG H, XIAO Z, YANG J, et al. Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ACP nanoparticles guided by glycine. Sci Rep. 2017;7:40701.
[27] HABELITZ S, BAI Y. Mechanisms of enamel mineralization guided by amelogenin nanoribbons. J Dent Res. 2021;100(13):1434-1443.
[28] SHAW WJ, TARASEVICH BJ, BUCHKO GW, et al. Controls of nature: secondary, tertiary, and quaternary structure of the enamel protein amelogenin in solution and on hydroxyapatite. J Struct Biol. 2020; 212(3):107630.
[29] ZHONG X, LAI TT, CHEN L, et al. Self-assembly and mineralization of full-length human amelogenin and its functional fragments in vitro. Hua Xi Kou Qiang Yi Xue Za Zhi. 2021;39(4):419-424.
[30] BUCHKO GW, JAYASINHA AR, TAO J, et al. Identification of major matrix metalloproteinase-20 proteolytic processing products of murine amelogenin and tyrosine-rich amelogenin peptide using a nuclear magnetic resonance spectroscopy based method. Arch Oral Biol. 2018;93:187-194.
[31] KWAK SY, LITMAN A, MARGOLIS HC, et al. Biomimetic enamel regeneration mediated by leucine-rich amelogenin peptide. J Dent Res. 2017;96(5):524-530.
[32] SHAFIEI F, HOSSEIN BG, FARAJOLLAHI MM, et al. Leucine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: an in vitro study. Scanning. 2015;37(3):179-185.
[33] FAN Y, SUN Z, MORADIAN-OLDAK J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials. 2009; 30(4):478-483.
[34] 董志红,陈渝,宋慧谨,等.釉原蛋白诱导氟基硅酸钙仿生矿化牙齿性能研究[J].成都大学学报(自然科学版),2019,38(2):130-133.
[35] INOUE A, KIYOSHIMA T, YOSHIZAKI K, et al. Deletion of epithelial cell-specific p130Cas impairs the maturation stage of amelogenesis. Bone. 2022; 154:116210.
[36] NANCI A, HASHIMOTO J, ZALZAL S, et al. Transient accumulation of proteins at interrod and rod enamel growth sites. Adv Dent Res. 1996; 10(2):135-149.
[37] IWATA T, YAMAKOSHI Y, HU JC, et al. Processing of ameloblastin by MMP-20. J Dent Res. 2007;86(2):153-157.
[38] FANG Z, GUO M, ZHOU Q, et al. Enamel-like tissue regeneration by using biomimetic enamel matrix proteins. Int J Biol Macromol. 2021; 183:2131-2141.
[39] CHU J, FENG X, GUO H, et al. Remineralization efficacy of an amelogenin-based synthetic peptide on carious lesions. Front Physiol. 2018;9:842.
[40] LV X, YANG Y, HAN S, et al. Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries. Arch Oral Biol. 2015; 60(10):1482-1487.
[41] KIRKHAM J, FIRTH A, VERNALS D, et al. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res. 2007;86(5): 426-430.
[42] LI Q L, NING TY, CAO Y, et al. A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel. BMC Biotechnol. 2014;14:32.
[43] HARTGERINK JD, BENIASH E, STUPP SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294(5547):1684-1688.
[44] GEBAUER D, GALE JD, CÖLFEN H. Crystal nucleation and growth of inorganic ionic materials from aqueous solution: selected recent developments, and implications. Small. 2022;18(28):e2107735.
[45] XIE B, HALTER T J, BORAH B M, et al. Tracking amorphous precursor formation and transformation during induction stages of nucleation. Cryst Growth Des. 2014;14(4):1659-1665.
[46] CASTRO RJ, MALTZ M, ARTHUR R A, et al. Anti-caries effect of fluoridated milk-based drink consumed by older adults on an in vitro root caries experimental model. Arch Oral Biol. 2020;118:104878.
[47] RAMADOSS R, PADMANABAN R, SUBRAMANIAN B. Role of bioglass in enamel remineralization: existing strategies and future prospects-a narrative review. J Biomed Mater Res B Appl Biomater. 2022;110(1): 45-66.
[48] SHEN P, MANTON DJ, COCHRANE NJ, et al. Effect of added calcium phosphate on enamel remineralization by fluoride in a randomized controlled in situ trial. J Dent. 2011;39(7):518-525.
[49] INDRAPRIYADHARSHINI K, MADAN K P, SHARMA K, et al. Remineralizing potential of CPP-ACP in white spot lesions - A systematic review. Indian J Dent Res. 2018;29(4):487-496.
[50] PRATHIMA GS, NARMATHA M, SELVABALAJI A, et al. Effects of Xylitol and CPP-ACP chewing gum on salivary properties of children with molar incisor hypomineralization. Int J Clin Pediatr Dent. 2021;14(3):412-415.
[51] DASHPER SG, CATMULL DV, LIU SW, et al. Casein phosphopeptide-amorphous calcium phosphate reduces streptococcus mutans biofilm development on glass ionomer cement and disrupts established biofilms. PLoS One. 2016;11(9):e162322.
[52] HOSIDA TY, PESSAN JP, CAVAZANA TP, et al. Effects of sodium hexametaphosphate and fluoride on the ph and inorganic components of streptococcus mutans and candida albicans biofilm after sucrose exposure. Antibiotics (Basel). 2022;11(8):1044.
[53] ERSAN Z, YAZICIOGLU I, SERIN AB, et al. The effects of disinfection with Er, Cr:YSGG laser, application of CPP-ACP and sodium hypochlorite on shear bond strength. Niger J Clin Pract. 2022;25(12):1949-1954.
[54] POGGIO C, LOMBARDINI M, VIGORELLI P, et al. Analysis of dentin/enamel remineralization by a CPP-ACP paste: aFM and SEM study. Scanning. 2013; 35(6):366-374.
[55] FERNANDO JR, BUTLER CA, ADAMS GG, et al. The prebiotic effect of CPP-ACP sugar-free chewing gum. J Dent. 2019;91:103225.
[56] DAI LL, MEI ML, CHU CH, et al. Remineralizing effect of a new strontium-doped bioactive glass and fluoride on demineralized enamel and dentine. J Dent. 2021;108:103633.
[57] GJORGIEVSKA ES, NICHOLSON JW. A preliminary study of enamel remineralization by dentifrices based on Recalden (CPP-ACP) and Novamin (calcium-sodium-phosphosilicate). Acta Odontol Latinoam. 2010;23(3):234-239.
[58] DIAMANTI I, KOLETSI-KOUNARI H, MAMAI-HOMATA E, et al. Effect of fluoride and of calcium sodium phosphosilicate toothpastes on pre-softened dentin demineralization and remineralization in vitro. J Dent. 2010;38(8):671-677.
[59] MAXIMIANO V, MACHADO AC, YOSHIDA ML, et al. Nd:YAG laser and calcium sodium phosphosilicate prophylaxis paste in the treatment of dentin hypersensitivity: a double-blind randomized clinical study. Clin Oral Investig. 2019;23(8):3331-3338.
[60] 伍廷芸,王德堂,朱友家,等.不同非含氟护牙剂对牙釉质酸蚀后再矿化效果影响的体内试验[J].中国组织工程研究,2019,23(18): 2842-2846.
[61] 隋小玲,刘源,杨燃,等.奥乐V护牙剂对早期釉质龋再矿化作用的研究[J].华西口腔医学杂志,2013,31(2):141-144.
[62] AKBABA GB, TÜRKEZ H. Investigation of the genotoxicity of aluminum oxide, β-tricalcium phosphate, and zinc oxide nanoparticles in vitro. Int J Toxicol. 2018;37(3):216-222.
[63] BHADORIA N, GUNWAL MK, KUKREJA R, et al. An in vitro evaluation of remineralization potential of functionalized tricalcium phosphate paste and cpp-acpf on artificial white spot lesion in primary and permanent enamel. Int J Clin Pediatr Dent. 2020;13(6):579-584.
[64] JANG JH, OH S, KIM HJ, et al. A randomized clinical trial for comparing the efficacy of desensitizing toothpastes on the relief of dentin hypersensitivity. Sci Rep. 2023;13(1):5271.
[65] LIMEBACK H, ENAX J, MEYER F. Improving oral health with fluoride-free calcium-phosphate-based biomimetic toothpastes: an update of the clinical evidence. Biomimetics (Basel). 2023;8(4):331.
[66] O’HAGAN-WONG K, ENAX J, MEYER F, et al. The use of hydroxyapatite toothpaste to prevent dental caries. Odontology. 2022;110(2):223-230.
[67] SINGAL K, SHARDA S, GUPTA A, et al. Effectiveness-of calcium Phosphate derivative agents on the prevention and remineralization of caries among children- A systematic review & meta-analysis of randomized controlled trials. J Evid Based Dent Pract. 2022;22(3):101746.
[68] CHENG L, YUAN R, FAN H, et al. The effect of the Er, Cr:YSGG laser combined casein phosphopeptide amorphous calcium phosphate for enamel remineralisation: a systematic review and meta-analysis of in vitro studies. Lasers Med Sci. 2023;38(1):201.
[69] BHAT DV, AWCHAT KL, SINGH P, et al. Evaluation of remineralizing potential of CPP-ACP, CPP-ACP + F and β-TCP + F and their effect on microhardness of enamel using vickers microhardness test: an in vitro study. Int J Clin Pediatr Dent. 2022;15(Suppl 2):S221-S225.
[70] LI X, YU Z, JIANG S, et al. An amelogenin-based peptide hydrogel promoted the odontogenic differentiation of human dental pulp cells. Regen Biomater. 2022;9:c39.
[71] WANG JX, YAN Y, WANG XJ. Clinical evaluation of remineralization potential of casein phosphopeptide amorphous calcium phosphate nanocomplexes for enamel decalcification in orthodontics. Chin Med J (Engl). 2012;125(22):4018-4021.
[72] ATTIGUPPE P, MALIK N, BALLAL S, et al. CPP-ACP and fluoride: a synergism to combat caries. Int J Clin Pediatr Dent. 2019;12(2):120-125. |