中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (21): 3293-3298.doi: 10.12307/2024.077

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

不同钉棒内固定方式在腰椎侧路融合中的有限元力学分析

唐福波,钟远鸣,李智斐   

  1. 广西中医药大学第一附属医院,广西壮族自治区南宁市   530001
  • 收稿日期:2023-04-20 接受日期:2023-06-16 出版日期:2024-07-28 发布日期:2023-09-27
  • 通讯作者: 李智斐,硕士,主任医师,教授,广西中医药大学第一附属医院,广西壮族自治区南宁市 530001
  • 作者简介:唐福波,男,1982年生,广西壮族自治区容县人,回族,2006年广西医科大学毕业,副主任医师,主要从事脊柱脊髓疾病的诊治研究。
  • 基金资助:
    国家自然科学基金项目(81760874,82260942),项目负责人:钟远鸣;广西重点研发计划项目(桂科AB20159018),项目负责人:钟远鸣;广西中医药重点学科建设项目(GZXK-Z-20-21),项目认责人:钟远鸣;广西壮族自治区中医药管理局计划课题项目(GXZYA20220025),项目负责人:唐福波;广西自然科学基金面上项目(2023GXNSFAA026101),项目负责人:李智斐;广西中医临床优秀人才培养对象(Guangxi TCM [2022] No.14),项目负责人:李智斐

Finite element mechanical analysis of different screw-rod internal fixation methods in lateral lumbar fusion

Tang Fubo, Zhong Yuanming, Li Zhifei   

  1. First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, China
  • Received:2023-04-20 Accepted:2023-06-16 Online:2024-07-28 Published:2023-09-27
  • Contact: Li Zhifei, Master, Chief physician, Professor, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, China
  • About author:Tang Fubo, Associate chief physician, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, China
  • Supported by:
    National Natural Science Foundation of China, No. 81760874, 82260942 (to ZYM); Guangxi Key Research & Development Plan Project, No. Guike AB20159018 (to ZYM); Guangxi Key Discipline Construction Project of Traditional Chinese Medicine, No. GZXK-Z-20-21 (to ZYM); Guangxi Zhuang Autonomous Region Traditional Chinese Medicine Administration Plan Project, No. GXZYA20220025 (to TFB); General Project of Guangxi Natural Science Foundation, No. 2023GXNSFAA026101 (to LZF); Guangxi TCM Clinical Excellent Talent Training Target, No. Guangxi TCM[2022]14 (to LZF)

摘要:


文题释义:

力学响应:是指物体对外部力学刺激的反应。力学响应通常指物体在受到外力作用时,其形变、应力和应变等物理量的变化。目前,国内外生物力学研究学者逐渐意识到材料的力学响应在生物医学的重要性,了解生物体内植入物的力学响应对于理解其生理和病理过程、医疗设备设计和优化等具有重要作用。
植入物仿真:是一种使用计算机模拟和仿真技术来模拟和研究脊柱内固定植入物在脊柱内的行为和性能的方法。通过在脊柱内置入金属棒、螺钉、钢板等,以固定和稳定脊柱的结构,帮助恢复脊柱的稳定性和功能。相应的仿真可以应用于脊柱生物力学研究、植入物设计和优化等领域。通过建立脊柱内固定植入物的数学模型,结合生物力学仿真,可以模拟和预测植入物在脊柱内的运动、应力、应变等力学响应,从而帮助优化植入物的设计、性能和安全性。


背景:考虑到脊柱固定的稳定性,目前临床在进行侧路椎间融合时大多采用后路双边椎弓根螺钉固定的手术方式,且多数为两期手术完成。侧卧位的后路单侧、侧方椎体钉棒固定的固定方式,也有可能会提供较好的力学稳定性,所带来的手术时间缩短、风险与花费降低等获益考量值得进一步研究。

目的:比较4种不同侧路椎间融合内固定方式的生物力学特性。
方法:建立正常 L3-5有限元模型,在验证其有效性基础上模拟4种不同内固定方式,即后路双侧椎弓根螺钉+侧路融合模型(Model A)、后路单侧椎弓根螺钉+侧路融合模型(Model B)、侧路双侧螺钉+侧路融合模型(Model C)及侧路单侧螺钉+侧路融合模型(Model D)。分别比较各模型在生理活动范围下的稳定性、螺钉内固定和椎间融合器的应力差异。

结果与结论:①对所有重构模型,在融合节段(L4-5)的活动范围均显著下降,Model A的活动范围下降更明显;②在模型的屈伸、侧屈和轴向旋转运动状态,侧路置钉的峰值应力与后路置钉的峰值应力的差异分别超过67.74 MPa、80.10 MPa和43.95 MPa;③在不同重建模型内固定应力分布方面,Model A和Model B螺钉的应力分布主要集中在椎弓根螺钉的体部,而Model C和Model D的峰值应力主要集中在螺钉的尾部;④提示Model A能够获得最好的稳定性,并且能够降低 cage下沉及移位的风险;而Model B亦能够提供较好的稳定性,在保证稳定和固定的前提下能成为侧路融合的替代选择;⑤此外在选择侧路置钉的内固定时,Model C能获得与Model D相似的效果,但在临床诊疗上面对腰椎后伸不稳定的患者需谨慎选择侧路的单侧内固定,亦应避免过度后伸以降低螺钉松动和疲劳断裂的发生率。

https://orcid.org/0009-0009-6125-2301 (唐福波);https://orcid.org/0000-0002-4667-7039 (李智斐)

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 椎间融合, 侧路融合, 内固定, 仿真, 有限元, 生物力学, 优化分析

Abstract: BACKGROUND: Taking into account the stability of spinal fixation, the preferred approach for lateral lumbar interbody fusion is commonly the utilization of posterior bilateral pedicle screws, typically performed in two stages. An alternative method involving the posterior approach of unilateral fixation using lateral vertebral nail rods in the lateral decubitus position has shown potential for enhanced mechanical stability. This technique also offers additional advantages such as reduced operation time, lowered risks, and decreased costs, making it a promising area for further investigation. 
OBJECTIVE: To compare the biomechanical effect of lateral lumbar interbody fusion with four different types of posterior instruments. 
METHODS: A validated L3-5 finite element model was modified to simulate four different types of lateral lumbar interbody fusion: Model A: posterior bilateral pedicle screw fixation; Model B: posterior unilateral pedicle screw fixation; Model C: lateral bilateral screw fixation; Model D: lateral unilateral screw fixation. The stability in the range of physiological motion, and the stress difference of screw fixation and interbody fusion apparatus were compared among the models. 
RESULTS AND CONCLUSION: (1) When compared with the intact model, all reconstructive models displayed decreased motion range at L4-5. Model A had a more obvious range of motion decline. (2) In the flexion, lateral flexion and axial rotation, the differences between the peak stress of the lateral screw fixation and the peak stress of the posterior screw fixation were more than 67.74 MPa, 80.10 MPa and 43.95 MPa, respectively. (3) In terms of internal fixed stress distribution in different reconstructed models, the stress distribution of Model A and Model B screws was mainly concentrated in the body of the pedicle screw, while the peak stress of Model C and Model D screws was mainly concentrated in the tail of the screw. (4) It is suggested that Model A could obtain the best stability and reduce the risk of cage sinking and displacement. Model B could also provide better stability, and could be a choice for lateral fusion on the premise of ensuring stability and fixation. (5) Besides, Model C could achieve the same effect as Model D when the lateral road screw was selected. However, patients with lumbar instability should be cautious to choose unilateral lateral internal fixation, and excessive extension should be avoided to reduce the possibility of screw loosening and fixation fatigue. 

Key words: interbody fusion, lateral fusion, internal fixation, simulation, finite element, biomechanics, optimized analysis

中图分类号: