中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (3): 398-403.doi: 10.12307/2023.977

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

明胶/氧化纳米纤维素高弹性模量高孔隙皮肤支架的3D打印工艺

许晓东1,2,周骥平3,张  琦3,冯  辰1,2,朱勉顺1,史宏灿4   

  1. 1扬州工业职业技术学院,江苏省扬州市  225127;2江苏省新材料塑性成形智能化应用工程研究中心,江苏省扬州市  225127;3扬州大学机械工程学院,江苏省扬州市  225127;4扬州大学医学院,江苏省扬州市  225009
  • 收稿日期:2022-11-21 接受日期:2023-01-18 出版日期:2024-01-28 发布日期:2023-07-10
  • 通讯作者: 周骥平,博士,教授,博士生导师,扬州大学机械工程学院,江苏省扬州市 225127
  • 作者简介:许晓东,男,1988年生,江苏省扬州市人,博士,讲师,主要从事3D打印技术和组织工程支架方向研究。
  • 基金资助:
    国家自然科学基金(81770018),项目负责人:史宏灿;扬州市-扬州大学科技合作项目(SCX2017020015),项目负责人:周骥平;江苏省高等学校基础科学(自然科学)研究面上项目 (21KJD460010),项目负责人:许晓东;2021年度校级科研课题(自然科学)项目(2021xjzk003),项目负责人:许晓东

3D printing process of gelatin/oxidized nanocellulose skin scaffold with high elastic modulus and high porosity 

Xu Xiaodong1, 2, Zhou Jiping3, Zhang Qi3, Feng Chen1, 2, Zhu Mianshun1, Shi Hongcan4   

  1. 1Yangzhou Polytechnic Institute, Yangzhou 225127, Jiangsu Province, China; 2Jiangsu Province Engineering Research Center of Intelligent Application for Advanced Plastic Forming, Yangzhou 225127, Jiangsu Province, China; 3College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China; 4Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
  • Received:2022-11-21 Accepted:2023-01-18 Online:2024-01-28 Published:2023-07-10
  • Contact: Zhou Jiping, MD, Professor, Doctoral supervisor, College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
  • About author:Xu Xiaodong, MD, Lecturer, Yangzhou Polytechnic Institute, Yangzhou 225127, Jiangsu Province, China; Jiangsu Province Engineering Research Center of Intelligent Application for Advanced Plastic Forming, Yangzhou 225127, Jiangsu Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 81770018 (to SHC); Yangzhou-Yangzhou University Science and Technology Cooperation Project, No. SCX2017020015 (to ZJP); Basic Science (Natural Science) Research Project of Institutions of Higher Learning in Jiangsu Province, No. 21KJD460010 (to XXD); 2021 University-Level Scientific Research Topic (Natural Science) Project, No. 2021xjzk003 (to XXD)

摘要:


文题释义:

弹性模量:是描述材料或结构在应力下发生形变的物理量,应力与应变的比值称为弹性模量。弹性模量与材料本身和材料的形状有关,比如将凝胶材料制备成实心结构或多孔结构其弹性模量会发生改变,将试件作为整体测试弹性模量,结果与材料本身的弹性模量是不一样的。在皮肤支架的临床应用中,抗压性能是最重要的力学指标,故通常认为弹性模量越大力学强度越好。 

3D打印工艺:3D打印是增材成型的一种,明胶/氧化纳米纤维素复合凝胶采用冷挤压成形,其3D打印工艺包括挤出时的温度与压力、喷嘴移动的速度及支架的分形方法等。分形方法是将给定的三维模型通过一定算法进行分层,每层中再按照给定的间隙进行移动轨迹的规划,最终按照规划的轨迹进行布丝成形。填充间隙就是喷嘴移动轨迹中两相邻平行直线的间距。


背景:在采用主动修复治疗手段应对皮肤创伤时,需要使用组织工程技术生成新的组织来代替坏死组织,皮肤支架在创伤修复领域具有良好的应用前景。皮肤支架需要呈现具有一定力学强度的三维多孔结构,以满足细胞增殖分裂的需求,而目前使用的明胶基生物材料力学强度弱,无法达到皮肤支架的使用要求。
目的:针对明胶/氧化纳米纤维素复合材料制备组织工程皮肤支架时使用的3D打印工艺进行研究,重点研究不同工艺参数下制备皮肤支架的孔隙率与其力学强度之间的关系。
方法:从葎草中提取10%浓度的氧化纳米纤维素晶须,再与5%的明胶复合得到明胶/氧化纳米纤维素复合材料,检测明胶与明胶/氧化纳米纤维素复合材料的弹性模量。以明胶/氧化纳米纤维素复合材料为基材,采用3D打印挤压成型方法制备皮肤支架,通过对材料进行力学性能测试和流变特性测试确定挤压成型工艺参数(填充间隙1.5-2.5 mm,0.1 mm均布;气压160-200 kPa),并以此制备具有三维多孔结构的皮肤支架。对皮肤支架进行了抗压性能的测试并与有限元分析结果相对比,论证了支架打印时的填充间隙与支架孔隙率及力学强度之间的关系。

结果与结论:①通过实验得出,加入10%浓度的氧化纳米纤维素晶须使5%明胶的弹性模量度提升了8.84倍;在气压160 kPa下挤出成型可以得到1 mm直径的丝状凝胶,此时填充间隙从1.5 mm增大到2.5 mm会使支架的理论孔隙率从33%上升到60%,但抗压强度从230 000 Pa降低到95 000 Pa;②结果显示,使用2 mm填充间隙制备得到了理论孔隙率为50%、弹性模量160 000 Pa的皮肤支架,该支架具有清晰的三维多孔结构。

https://orcid.org/0000-0002-7148-4036(许晓东)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 皮肤支架, 弹性模量, 孔隙率, 3D打印, 填充间隙, 氧化纳米纤维素, 复合凝胶

Abstract: BACKGROUND: In the treatment of skin trauma with active repair, tissue engineering techniques are needed to generate new tissue to replace necrotic tissue. Skin scaffolds have a good application prospect in the field of wound repair. Skin scaffolds need to present three-dimensional porous structures with certain mechanical strength to meet the needs of cell proliferation and division. However, the mechanical strength of the currently used gelatin-based biomaterials is weak and cannot meet the requirements of the use of skin scaffolds.
OBJECTIVE: To study the 3D printing process used in the preparation of tissue engineering skin scaffolds by gelatin/oxidized nanocellulose composites, and focus on the relationship between the porosity and mechanical strength of the scaffolds prepared under different process parameters.
METHODS: Oxidized nanocellulose whiskers at 10% concentration were extracted from Humulus scandens and then compounded with 5% gelatin to obtain gelatin/oxidized nanocellulose composites. The elastic modulus of gelatin and gelatin/oxidized nanocellulose composite was determined. Skin scaffolds were prepared by 3D printing extrusion molding using gelatin/oxidized nanocellulose composite as the base material. Mechanical and rheological properties of the composite were tested to determine extrusion molding parameters (filling gap 1.5-2.5 mm, uniform distribution of 0.1 mm; air pressure of 160-200 kPa), and the skin scaffold with a three-dimensional porous structure was prepared. The compressive performance of the skin scaffold was tested and compared with the finite element analysis results. The relationship between the filling gap and the porosity and mechanical strength of the scaffold was demonstrated. 
RESULTS AND CONCLUSION: (1) The elastic modulus of 5% gelatin was increased by 8.84 times by adding 10% oxidized nanocellulose whisker. A gel filament with a diameter of 1 mm was obtained by extrusion at the air pressure of 160 kPa. When the filling gap increased from 1.5 mm to 2.5 mm, the theoretical porosity of the scaffold increased from 33% to 60%, but the compressive strength decreased from 230 000 Pa to 95 000 Pa. (2) These findings showed that the skin scaffold with theoretical porosity of 50% and elastic modulus of 160 000 Pa was prepared by using 2 mm filling gap. The scaffold had a clear three-dimensional porous structure.

Key words: skin scaffold, elastic modulus, porosity, 3D printing, filling gap, oxidized nanocellulose, composite gel

中图分类号: