[1] LI Y, GUO Y, LI M, et al. Acetabular index is the best predictor of late residual acetabular dysplasia after closed reduction in developmental dysplasia of the hip. Int Orthop. 2018;42(3):631-640.
[2] LUO R, LI G, LI B, et al. Comparison of the modified Smith-Petersen (S-P) and ilioinguinal (I-I) approaches for periacetabular osteotomy in adult developmental dysplasia of the hip: a retrospective study. J Orthop Surg Res. 2021;16(1):157.
[3] YAN L, WANG P, Zhou H. 3D Printing navigation template used in total hip arthroplasty for developmental dysplasia of the hip. Indian J Orthop. 2020;54(6):856-862.
[4] LOGANATHAN B, SHARMA V, KUMAR MR, et al. Acetabulum reconstruction with tantalumcup and augments in dysplastic hip type 4 using 3D printing technology. J Orthop Case Rep. 2020;10(7):18-21.
[5] ERTVRK C, AYYILDIZ S, ERDOL C. Orthopedics and 3D technology in Turkey: a preliminary report. Joint Dis Relat Surg. 2021;32(2):279-289.
[6] QIAN H, LEI T, LEI P, et al. Additively manufactured tantalum implants for repairing bone defects: a systematic review. Tissue Eng Part B Rev. 2021; 27(2):166-180.
[7] HUA L, LEI T, QIAN H, et al. 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects. Expert Opin Drug Deliv. 2021;18(5):625-634.
[8] CROWE JF, MANI VJ, RANAWAT CS. Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am. 1979;61(1):15-23.
[9] WANG H, SU K, SU L, et al. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019;104:109908.
[10] 伍旭林,邱冰,朱伟民,等.钽金属垫块翻修术联合3D打印技术在Paprosky 3型髋臼骨缺损中的疗效评价[J].中国老年学杂志,2019,39(20): 4992-4995.
[11] PAPROSKY WG, PERONA PG, LAWRENCE JM. Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplasty. 1994;9(1):33-44.
[12] 石永言,刘天婧,赵群,等.中国人髋关节中心边缘角正常值的测量[J].中华小儿外科杂志,2010,31(2):118-122.
[13] ONAC O, ALPAY Y, YAPICI F, et al. Correlation of postoperative magnetic resonance image measurements with persisting acetabular dysplasia in open reduction of developmental hip dysplasia. Jt Dis Relat Surg. 2021; 32(2):461-467.
[14] ANDERSON LA, ANDERSON MB, ERICKSON JA, et al. Acetabular wall indices help to distinguish acetabular coverage in asymptomatic adults with varying morphologies. Clin Orthop Relat Res. 2017;475(4):1027-1033.
[15] AYANOGLU T, ATAOGLU MB, TOKGOZ N, et al. Assessing the risk of asymptomatic dysplasia in parents of children with developmental hip dysplasia. Acta Orthop Traumatol Turc. 2019,53(5):346-350.
[16] OKUZU Y, GOTO K, KAWATA T, et al. The relationship between subluxation percentage of the femoroacetabular joint and acetabular width in asian women with developmental dysplasia of the hip. J Bone Joint Surg Am. 2017;99(7):e31.
[17] WIBERG G. Shelf operation in congenital dysplasia of the acetabulum and in subluxation and dislocation of the hip. J Bone Joint Surg Am. 1953;35-A(1): 65-80.
[18] VAUDREUIL NJ, MCCLINCY MP. Evaluation and treatment of borderline dysplasia: moving beyond the lateral center edge angle. Curr Rev Musculoskelet Med. 2020;13(1):28-37.
[19] MIETTINEN HJ, MIETTINEN SS, Kettunen JS, et al. Revision hip arthroplasty using a porous tantalum acetabular component. Hip Int. 2021;31(6):782-788.
[20] WANG F, CHEN H, YANG P, et al. Three-dimensional printed porous tantalum prosthesis for treating inflammation after total knee arthroplasty in one-stage surgery-a case report. J Int Med Res. 2020;48(3):1219690832.
[21] SU KX, Ji P, WANG H, et al. In vivo study of 3D printed porous tantalum implant on osseointegration. Hua Xi Kou Qiang Yi Xue Za Zhi. 2018;36(3): 291-295.
[22] WANG L, HU X, MA X, et al. Promotion of osteointegration under diabetic conditions by tantalum coating-based surface modification on 3-dimensional printed porous titanium implants. Colloids Surf B Biointerfaces. 2016; 148(16):440-452.
[23] BALLA VK, BANERJEE S, BOSE S, et al. Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 2010; 6(6):2329-2334.
[24] 吴先哲.骨科植入用多孔钽激光3D打印成形工艺及生物力学性能研究[D].北京:机械科学研究总院,2021.
[25] FERNANDEZ-FAIREN M, MURCIA A, IGLESIAS R, et al. Osteointegration of porous tantalum stems implanted in avascular necrosis of the hip. Acta Ortop Mex. 2008;22(4):215-221.
[26] RAN Q, YANG W, HU Y, et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J Mech Behav Biomed Mater. 2018; 84(18):1-11.
[27] 程亮亮,赵德伟,杨磊,等. 3D打印多孔钽金属髋臼加强块在成人DDH髋关节重建术中的应用[J].中华骨科杂志,2018,38(11):650-657.
[28] LI Z, CHEN G, XIANG Y, et al. Treatment of massive iliac chondrosarcoma with personalized three-dimensional printed tantalum implant: a case report and literature review. J Int Med Res. 2020;48(10):1220759060.
[29] SING SL, WANG S, AGARWALA S, et al. Fabrication of titanium based biphasic scaffold using selective laser melting and collagen immersion. Int J Bioprint. 2017;3(1):7.
[30] BEAUREGARD N, AL-FURAIJI M, Dias G, et al. Enhancing iCVD modification of electrospun membranes for membrane distillation using a 3D printed scaffold. Polymers (Basel). 2020;12(9):2074.
[31] CHENG C, GUPTA M. Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition. Beilstein J Nanotechnol. 2017;8:1629-1636.
[32] LU S, XIN X, HUANG W, et al. Progress in clinical application of 3D printed navigational template in orthopedic surgery. Nan Fang Yi Ke Da Xue Xue Bao. 2020;40(8):1220-1224.
[33] CHENG R, ZHANG H, Kernkamp WA, et al. Relations between the Crowe classification and the 3D femoral head displacement in patients with developmental dysplasia of the hip. BMC Musculoskelet Disord. 2019; 20(1):530.
[34] ZENG C, XING W, WU Z, et al. A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction. Injury. 2016;47(10):2223-2227.
[35] ZHENG P, XU P, YAO Q, et al. 3D-printed navigation template in proximal femoral osteotomy for older children with developmental dysplasia of the hip. Sci Rep. 2017;7(1):44993.
[36] LIANG S, XIE J, WANG F, et al. Application of three-dimensional printing technology in peripheral hip diseases. Bioengineered. 2021;12(1):5883-5891.
[37] 刘洋,吴先哲,马幸双,等.个性化3D打印多孔钽植入假体设计的基本原则[J].重庆医学,2021,50(16):2822-2825.
[38] ZHANG YZ, CHEN B, LU S, et al. Preliminary application of computer-assisted patient-specific acetabular navigational template for total hip arthroplasty in adult single development dysplasia of the hip. Int J Med Robot. 2011;7(4): 469-474.
[39] FENG ZH, LI XB, PHAN K, et al. Design of a 3D navigation template to guide the screw trajectory in spine: a step-by-step approach using Mimics and 3-Matic software. J Spine Surg. 2018;4(3):645-653.
[40] ZHANG H, ZHOU J, GUAN J, et al. How to restore rotation center in total hip arthroplasty for developmental dysplasia of the hip by recognizing the pathomorphology of acetabulum and Harris fossa? J Orthop Surg Res. 2019;14(1):339.
[41] JOHNSTON RC, BRAND RA, CROWNINSHIELD RD. Reconstruction of the hip. A mathematical approach to determine optimum geometric relationships. J Bone Joint Surg Am. 1979;61(5):639-652.
[42] TU Q, DING HW, CHEN H, et al. Preliminary application of 3D-printed individualised guiding templates for total hip arthroplasty in Crowe type IV developmental dysplasia of the hip. Hip Int. 2020. doi:10.1177/1120700020948006.
[43] ZHANG H, GUAN JZ, ZHANG Z, et al. Restoring rotation center in total hip arthroplasty for developmental dysplasia of the hip with the assistance of three dimensional printing technology: a pilot study. J Orthop Surg. 2022;14(1):119-128.
[44] ZHENG P, YAO Q, XU P, et al. Application of computer-aided design and 3D-printed navigation template in Locking Compression Pediatric Hip Plate (TauMu) placement for pediatric hip disease. Int J Comput Assist Radiol Surg. 2017;12(5):865-871.
[45] TOMAZEVIC M, KRISTAN A, KAMATH AF, et al. 3D printing of implants for patient-specific acetabular fracture fixation: an experimental study. Eur J Trauma Emerg Surg. 2021;47(5):1297-1305.
[46] ZHANG H, LIU Y, DONG Q, et al. Novel 3D printed integral customized acetabular prosthesis for anatomical rotation center restoration in hip arthroplasty for developmental dysplasia of the hip crowe type III: a case report. Medicine (Baltimore). 2020;99(40):e22578.
[47] 黎庆钿,林博夫,陈学潘,等.3D技术辅助钽金属块植入修复严重髋臼骨缺损的早期疗效[J].中华骨科杂志,2020,40(3):129-137.
[48] FAN H, DENG S, TANG W, et al. Highly porous 3D printed tantalum scaffolds have better biomechanical and microstructural properties than titanium scaffolds. Biomed Res Int. 2021;2021:2899043.
[49] GUO Y, XIE K, JIANG W, et al. In Vitro and in Vivo Study of 3D-printed porous tantalum scaffolds for repairing bone defects. ACS Biomater Sci Eng. 2019;5(2):1123-1133.
[50] 陈检文,董立明,蒋科,等.髋臼假体安装位置与无菌性松动的相关分析[J]中国矫形外科杂志,2022,30(1):1-5.
[51] DOU X, WEI X, LIU G, et al. Effect of porous tantalum on promoting the osteogenic differentiation of bone marrow mesenchymal stem cells in vitro through the MAPK/ERK signal pathway. J Orthop Translat. 2019;19:81-93.
[52] DING Z, WANG Y, ZHOU Q, et al. Microstructure, wettability, corrosion resistance and antibacterial property of Cu-MTa2O5 multilayer composite coatings with different cu incorporation contents. Biomolecules. 2019; 10(1):28.
[53] SOWA M, SIMKA W. Electrochemical impedance and polarization corrosion studies of tantalum surface modified by DC plasma electrolytic oxidation. Materials (Basel). 2018;11(4):545.
[54] MA L, CHENG S, Ji X, et al. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis. Mater Sci Eng C Mater Biol Appl. 2020;117:111303.
[55] 刘旭.金属加强块在严重髋臼骨缺损重建中的临床应用[D].长春:吉林大学,2020.
[56] 杨柳,王富友.医学3D打印多孔钽在骨科的应用[J].第三军医大学学报,2019,41(19):1859-1866.
[57] 吴昊,郭征. 3D打印多孔钛与钛合金及多孔钽骨科植入物的性能比较及应用展望[J].中华创伤骨科杂志,2020,22(10):916-920.
[58] ZHOU Y, KANG X, LI C, et al. Application of a 3-dimensional printed navigation template in Bernese periacetabular osteotomies: a cadaveric study. Medicine (Baltimore). 2016;95(50):e5557.
|