[1] BORRELL LN, PAPAPANOU PN. Analytical epidemiology of periodontitis. J Clin Periodontol. 2005;32(Suppl 6):132-158.
[2] BLOCK T, EL-OSTA A. Epigenetic programming, early life nutrition and the risk of metabolic disease. Atherosclerosis. 2017;266(12):31-40.
[3] LARSSON L, CASTILHO RM, GIANNOBILE WV. Epigenetics and its role in periodontal diseases: a state-of-the-art review. J Periodontol. 2015;86(4):556-568.
[4] WADDINGTON CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1): 10-13.
[5] MIRANDA FURTADO CL, DOS SANTOS LUCIANO MC, SILVA SANTOS RD, et al. Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics. 2019;14(12):1164-1176.
[6] BAYARSAIHAN D. Epigenetic mechanisms involved in modulation of inflammatory diseases. Curr Opin Clin Nutr Metab Care. 2016;19(4): 263-269.
[7] HERCEG Z. Epigenetic Mechanisms as an Interface Between the Environment and Genome. Adv Exp Med Biol. 2016;903(1):3-15.
[8] PERKINS DJ, PATEL MC, BLANCO JC, et al. Epigenetic Mechanisms Governing Innate Inflammatory Responses. J Interferon Cytokine Res. 2016;36(7):454-461.
[9] LYKO F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19(2):81-92.
[10] MARTINS MD, JIAO Y, LARSSON L, et al. Epigenetic Modifications of Histones in Periodontal Disease. J Dent Res. 2016;95(2):215-222.
[11] JAVAID N,CHOI S. Acetylation- and Methylation-Related Epigenetic Proteins in the Context of Their Targets. Genes. 2017;8(8):196-196.
[12] PENNA I, GIGONI A, COSTA D, et al. The inhibition of 45A ncRNA expression reduces tumor formation, affecting tumor nodules compactness and metastatic potential in neuroblastoma cells. Oncotarget. 2017;8(5):8189-8205.
[13] QI P, ZHOU XY, DU X. Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer. 2016;15(1):39-39.
[14] FILIPOWICZ W, BHATTACHARYYA SN, SONENBERG N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet. 2008;9(2):102-114.
[15] VISVANATHAN A, SOMASUNDARAM K. mRNA Traffic Control Reviewed: N6-Methyladenosine (m(6) A) Takes the Driver’s Seat. Bioessays. 2018; 40(1):1-12.
[16] BARROS SP, OFFENBACHER S. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response. Periodontol 2000. 2014;64(1):95-110.
[17] RINN JL, CHANG HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81(1):145-166.
[18] SMALE ST. Transcriptional regulation in the innate immune system. Curr Opin Immunol. 2012;24(1):51-57.
[19] YIN L, CHUNG WO. Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol. 2011;4(4):409-419.
[20] ATEIA IM, SUTTHIBOONYAPAN P, KAMARAJAN P, et al. Treponema denticola increases MMP-2 expression and activation in the periodontium via reversible DNA and histone modifications. Cell Microbiol. 2018; 20(4):1-60.
[21] BENAKANAKERE M, ABDOLHOSSEINI M, HOSUR K, et al. TLR2 promoter hypermethylation creates innate immune dysbiosis. J Dent Res. 2015; 94(1):183-191.
[22] NA HS, PARK MH, SONG YR, et al. Elevated MicroRNA-128 in Periodontitis Mitigates Tumor Necrosis Factor-α Response via p38 Signaling Pathway in Macrophages. J Periodontol. 2016;87(9):e173-e182.
[23] TAKAI R, UEHARA O, HARADA F, et al. DNA hypermethylation of extracellular matrix-related genes in human periodontal fibroblasts induced by stimulation for a prolonged period with lipopolysaccharide derived from Porphyromonas gingivalis. J Periodontal Res. 2016;51(4):508-517.
[24] MIAO D, GODOVIKOVA V, QIAN X, et al. Treponema denticola upregulates MMP-2 activation in periodontal ligament cells: interplay between epigenetics and periodontal infection. Arch Oral Biol. 2014; 59(10):1056-1064.
[25] FRANCO C, PATRICIA HR, TIMO S, et al. Matrix metalloproteinases as regulators of periodontal inflammation. Int J Mol Sci. 2017;18(2):440-440.
[26] CORRÊA RO, VIEIRA A, SERNAGLIA E, et al. Bacterial short‐chain fatty acid metabolites modulate the inflammatory response against infectious bacteria. Cellular microbiology. 2017;19(7):1-47.
[27] CHANG MC, CHEN YJ, LIAN YC, et al. Butyrate Stimulates Histone H3 Acetylation, 8-Isoprostane Production, RANKL Expression, and Regulated Osteoprotegerin Expression/Secretion in MG-63 Osteoblastic Cells. Int J Mol Sci. 2018;19(12):4071-4071.
[28] SEO JY, PARK YJ, YI YA, et al. Epigenetics: general characteristics and implications for oral health. Restor Dent Endod. 2015;40(1):14-22.
[29] LUO Y, PENG X, DUAN D, et al. Epigenetic Regulations in the Pathogenesis of Periodontitis. Curr Stem Cell Res Ther. 2018;13(2):144-150.
[30] KOBAYASHI T, ISHIDA K,YOSHIE H. Increased expression of interleukin-6 (IL-6) gene transcript in relation to IL-6 promoter hypomethylation in gingival tissue from patients with chronic periodontitis. Arch Oral Biol. 2016;69(3):89-94.
[31] SCHULZ S, IMMEL UD, JUST L, et al. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum Immunol. 2016;77(1):71-75.
[32] SHADDOX LM, MULLERSMAN AF, HUANG H, et al. Epigenetic regulation of inflammation in localized aggressive periodontitis. Clin Epigenetics. 2017;9(23):94-94.
[33] SEUTTER S, WINFIELD J, ESBITT A, et al. Interleukin 1β and Prostaglandin E2 affect expression of DNA methylating and demethylating enzymes in human gingival fibroblasts. Int Immunopharmacol. 2020;78(11):1-10.
[34] VIANA MB, CARDOSO FP, DINIZ MG, et al. Methylation pattern of IFN-γ and IL-10 genes in periodontal tissues. Immunobiology. 2011;216(8): 936-941.
[35] ZHANG Q, CHEN B, YAN F, et al. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases. Biomed Res Int. 2014;2014(10):1-5.
[36] ZHANG Z, ZHENG Y, LI X. Interleukin-10 gene polymorphisms and chronic periodontitis susceptibility: Evidence based on 33 studies. J Periodontal Res. 2019;54(2):95-105.
[37] FINOTI LS, NEPOMUCENO R, PIGOSSI SC, et al. Association between interleukin-8 levels and chronic periodontal disease: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2017;96(22):1-8.
[38] ANDIA DC, DE OLIVEIRA NF, CASARIN RC, et al. DNA methylation status of the IL8 gene promoter in aggressive periodontitis. J Periodontol. 2010;81(9):1336-1341.
[39] ZHANG S, BARROS SP, MORETTI AJ, et al. Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol. 2013;84(11):1606-1616.
[40] LAVU V, VETTRISELVI V, PRIYANKA V, et al. Methylation Status of Promoter Region of Tumor Necrosis Factor Alpha Gene in Subjects with Healthy Gingiva and Chronic Periodontitis–A Pilot Study. Biomed Pharmacol J. 2019;12(2):639-647.
[41] LI S, SONG Z, DONG J, et al. microRNA-142 is upregulated by tumor necrosis factor-alpha and triggers apoptosis in human gingival epithelial cells by repressing BACH2 expression. Am J Transl Res. 2017;9(1):175-183.
[42] BABON JJ, NICOLA NA. The biology and mechanism of action of suppressor of cytokine signaling 3. Growth Factors. 2012;30(4):207-219.
[43] BAPTISTA NB, PORTINHO D, CASARIN RC, et al. DNA methylation levels of SOCS1 and LINE-1 in oral epithelial cells from aggressive periodontitis patients. Arch Oral Biol. 2014;59(7):670-678.
[44] UEHARA O, ABIKO Y, SAITOH M, et al. Lipopolysaccharide extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related transcription factor 2 in human periodontal fibroblasts. J Microbiol Immunol Infect. 2014;47(3):176-181.
[45] CHO Y, KIM B, BAE H, et al. Direct Gingival Fibroblast/Osteoblast Transdifferentiation via Epigenetics. J Dent Res. 2017;96(5):555-561.
[46] HUYNH NC, EVERTS V, PAVASANT P, et al. Inhibition of Histone Deacetylases Enhances the Osteogenic Differentiation of Human Periodontal Ligament Cells. J Cell Biochem. 2016;117(6):1384-1395.
[47] CHO YD, RYOO HM. Trans-differentiation via Epigenetics: A New Paradigm in the Bone Regeneration. J Bone Metab. 2018;25(1):9-13.
[48] LOD S, JOHANSSON T, ABRAHAMSSON KH, et al. The influence of epigenetics in relation to oral health. Int J Dent Hyg. 2014;12(1):48-54.
[49] SOMINENI HK, VENKATESWARAN S, KILARU V, et al. Blood-Derived DNA Methylation Signatures of Crohn’s Disease and Severity of Intestinal Inflammation. Gastroenterology. 2019;156(8):2254-2265.
[50] ZHAO M, ZHOU Y, ZHU B, et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann Rheum Dis. 2016;75(11):1998-2006.
[51] JIANG Y, FU J, DU J, et al. DNA methylation alterations and their potential influence on macrophage in periodontitis. Oral Dis. 2020 Sep 29. doi: 10.1111/odi.13654.
[52] KOJIMA A, KOBAYASHI T, ITO S, et al. Tumor necrosis factor-alpha gene promoter methylation in Japanese adults with chronic periodontitis and rheumatoid arthritis. J Periodontal Res. 2016;51(3):350-358.
[53] KURUSHIMA Y, TSAI PC, CASTILLO-FERNANDEZ J, et al. Epigenetic findings in periodontitis in UK twins: a cross-sectional study. Clin Epigenetics. 2019;11(1):27-27.
[54] WEI Y, SHI M, ZHEN M, et al. Comparison of subgingival and buccal mucosa microbiome in chronic and aggressive periodontitis: a pilot study. Front Cell Infect Microbiol. 2019;9(1):53-53.
[55] EIPEL M, MAYER F, ARENT T, et al. Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. Aging (Albany NY). 2016;8(5):1034-1048.
[56] LANGIE SAS, MOISSE M, DECLERCK K, et al. Salivary DNA Methylation Profiling: Aspects to Consider for Biomarker Identification. Basic Clin Pharmacol Toxicol. 2017;121 (Suppl 3):93-101.
[57] DE FARIA AMORMINO SA, ARÃO TC, SARAIVA AM, et al. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis. Hum Immunol. 2013;74(9):1231-1236.
[58] HAN P,IVANOVSKI S. Effect of Saliva Collection Methods on the Detection of Periodontium-Related Genetic and Epigenetic Biomarkers—A Pilot Study. Int J Mol Sci. 2019;20(19):4729-4729.
[59] BENAKANAKERE MR, FINOTI L, PALIOTO DB, et al. Epigenetics, Inflammation, and Periodontal Disease. Current Oral Health Reports. 2019;6(1):37-46.
[60] IVANOV M, BARRAGAN I, INGELMAN-SUNDBERG M. Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci. 2014;35(8):384-396.
[61] CANTLEY MD, ZANNETTINO ACW, BARTOLD PM, et al. Histone deacetylases (HDAC) in physiological and pathological bone remodelling. Bone. 2017;95(1):162-174.
[62] MENG S, ZHANG L, TANG Y, et al. BET Inhibitor JQ1 Blocks Inflammation and Bone Destruction. J Dent Res. 2014;93(7):657-662.
[63] KIM TI, HAN JE, JUNG HM, et al. Analysis of histone deacetylase inhibitor-induced responses in human periodontal ligament fibroblasts. Biotechnol Lett.2013; 35(1): 129-133.
[64] CANTLEY MD, BARTOLD PM, MARINO V, et al. Histone deacetylase inhibitors and periodontal bone loss. J Periodontal Res. 2011;46(6): 697-703.
[65] MAKSYLEWICZ A, BYSIEK A, LAGOSZ KB, et al. BET Bromodomain Inhibitors Suppress Inflammatory Activation of Gingival Fibroblasts and Epithelial Cells From Periodontitis Patients. Front Immunol. 2019; 10(12): 933-933.
[66] SUFARU IG, BEIKIRCHER G, WEINHAEUSEL A, et al. Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts. J Periodontal Implant Sci. 2017;47(2):66-76.
[67] TOMASELLI D, LUCIDI A, ROTILI D, et al. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev. 2020;40(1):190-244.
[68] DUVIC M, DIMOPOULOS M. The safety profile of vorinostat (suberoylanilide hydroxamic acid) in hematologic malignancies: A review of clinical studies. Cancer Treat Rev. 2016;43(1):58-66.
[69] STATHIS A, BERTONI F. BET Proteins as Targets for Anticancer Treatment. Cancer Discov. 2018;8(1):24-36.
[70] LARSSON L, DECKER AM, NIBALI L, et al. Regenerative Medicine for Periodontal and Peri-implant Diseases. J Dent Res. 2016;95(3):255-266.
[71] BRACK AS, CONBOY MJ, ROY S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007; 317(5839):807-810.
[72] VISHAL M, AJEETHA R, KEERTHANA R, et al. Regulation of Runx2 by Histone Deacetylases in Bone. Curr Protein Pept Sci. 2016;17(4):343-351.
[73] ZHANG D, LI Q, RAO L, et al. Effect of 5-Aza-2’-deoxycytidine on odontogenic differentiation of human dental pulp cells. J Endod. 2015; 41(5):640-645.
[74] GOPINATHAN G, KOLOKYTHAS A, LUAN X, et al. Epigenetic marks define the lineage and differentiation potential of two distinct neural crest-derived intermediate odontogenic progenitor populations. Stem Cells Dev. 2013;22(12):1763-1778.
[75] LIU Z, CHEN T, SUN W, et al. DNA demethylation rescues the impaired osteogenic differentiation ability of human periodontal ligament stem cells in high glucose. Scientific Reports. 2016;6(1):1-12.
[76] HU X, ZHANG X, DAI L, et al. Histone deacetylase inhibitor trichostatin A promotes the osteogenic differentiation of rat adipose-derived stem cells by altering the epigenetic modifications on Runx2 promoter in a BMP signaling-dependent manner. Stem Cells Dev. 2013;22(2):248-255.
[77] GE W, LIU Y, CHEN T, et al. The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials. 2014;35(23) 6015-6025.
[78] DENG L, HONG H, ZHANG X, et al. Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway. Biochem Biophys Res Commun. 2018;503(3):2061-2067.
[79] LI Z, GUO X, WU S. Epigenetic silencing of KLF2 by long non-coding RNA SNHG1 inhibits periodontal ligament stem cell osteogenesis differentiation. Stem Cell Res Ther. 2020;11(1):435-435.
[80] NAIR A,TANG L. Influence of scaffold design on host immune and stem cell responses. Semin Immunol. 2017;29(1):62-71.
[81] RABINEAU M, FLICK F, MATHIEU E, et al. Cell guidance into quiescent state through chromatin remodeling induced by elastic modulus of substrate. Biomaterials. 2015;37(2):144-155.
[82] LV L, LIU Y, ZHANG P, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials. 2015; 39(3):193-205.
[83] HA SW, JANG HL, NAM KT, et al. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials. 2015;65(1):32-42.
[84] DU M, DUAN X, YANG P. Induced Pluripotent Stem Cells and Periodontal Regeneration. Curr Oral Health Rep. 2015;2(4):257-265.
[85] JIA X, MIRON RJ, YIN C, et al. HnRNPL inhibits the osteogenic differentiation of PDLCs stimulated by SrCl(2) through repressing Setd2. J Cell Mol Med. 2019;23(4):2667-2677.
[86] LORDEN ER, LEVINSON HM,LEONG KW. Integration of drug, protein, and gene delivery systems with regenerative medicine. Drug Deliv Transl Res. 2015;5(2):168-186. |