[1] BHANSALI RS, PRATZ KW, LAI C. Recent advances in targeted therapies in acute myeloid leukemia. J Hematol Oncol. 2023;16(1):29.
[2] DÖHNER K, THIEDE C, JAHN N, et al. Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood. 2020;135(5):371-380.
[3] ZHANG N, WU J, WANG Q, et al. Global burden of hematologic malignancies and evolution patterns over the past 30 years. Blood Cancer J. 2023;13(1):82.
[4] LIU H. Emerging agents and regimens for AML. J Hematol Oncol. 2021;14(1):49.
[5] KOGAN SC. Curing APL: differentiation or destruction?. Cancer Cell. 2009;15(1):7-8.
[6] LUO H, VONG CT, CHEN H, et al. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med. 2019; 14:48.
[7] ZHAO W, ZHENG X D, TANG P Y, et al. Advances of antitumor drug discovery in traditional Chinese medicine and natural active products by using multi-active components combination. Med Res Rev. 2023; 43(5):1778-1808.
[8] NAEEM A, HU P, YANG M, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules. 2022;27(23):8367.
[9] YANG C, ZHANG C, WANG Z, et al. Corynoline Isolated from Corydalis bungeana Turcz. Exhibits Anti-Inflammatory Effects via Modulation of Nfr2 and MAPKs. Molecules. 2016;21(8):975.
[10] KIM DK. Inhibitory effect of corynoline isolated from the aerial parts of Corydalis incisa on the acetylcholinesterase. Arch Pharm Res. 2002; 25(6):817-819.
[11] FANG ZZ, ZHANG YY, GE GB, et al. Identification of cytochrome P450 (CYP) isoforms involved in the metabolism of corynoline, and assessment of its herb-drug interactions. Phytother Res. 2011;25(2): 256-263.
[12] LIU B, SU K, WANG J, et al. Corynoline Exhibits Anti-inflammatory Effects in Lipopolysaccharide (LPS)-Stimulated Human Umbilical Vein Endothelial Cells through Activating Nrf2. Inflammation. 2018; 41(5):1640-1647.
[13] SHI Y, YUAN Q, CHEN Y, et al. Corynoline inhibits esophageal squamous cell carcinoma growth via targeting Pim-3. Phytomedicine. 2024;123:155235.
[14] LI SL, KONG XY, FANG Y. [(+)-corynoline Regulates the Proliferation,Stemness and Apoptosis of Triple Negative Breast Cancer Cells]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2022;44(2):244-252.
[15] YI C, LI X, CHEN S, et al. Natural product corynoline suppresses melanoma cell growth through inducing oxidative stress. Phytother Res. 2020;34(10):2766-2777.
[16] LI S, ZHANG B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2): 110-120.
[17] LI X, LIU Z, LIAO J, et al. Network pharmacology approaches for research of Traditional Chinese Medicines. Chin J Nat Med. 2023;21(5):323-332.
[18] FANG T, LIU L, LIU W. Exploring the mechanism of fraxetin against acute myeloid leukemia through cell experiments and network pharmacology.BMC Complement Med Ther. 2024;24(1):226.
[19] JIAO Y, SHI C, SUN Y. Unraveling the Role of Scutellaria baicalensis for the Treatment of Breast Cancer Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Int J Mol Sci. 2023;24(4):3594.
[20] KIM S, CHEN J, CHENG T, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1): D1388-D1395.
[21] WANG X, SHEN Y, WANG S, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017;45(W1):W356-W360.
[22] DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357-W364.
[23] RU J, LI P, WANG JA, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13.
[24] UniProt: the Universal Protein Knowledgebase in 2025. Nucleic Acids Res. 2025;53(D1):D609-D617.
[25] HAMOSH A, SCOTT AF, AMBERGER JS, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(Database issue): D514-D517.
[26] KNOX C, WILSON M, KLINGER CM, et al. DrugBank 6.0: the DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024;52(D1): D1265-D1275.
[27] SAFRAN M, CHALIFA-CASPI V, SHMUELI O, et al. Human Gene-Centric Databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Res. 2003;31(1):142-146.
[28] SHERMAN BT, HAO M, QIU J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-W221.
[29] TANG Z, KANG B, LI C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556-W560.
[30] GYŐRFFY B.Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation (Camb). 2024;5(3):100625.
[31] MORRIS GM, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J Comput Chem. 2009;30(16):2785-2791.
[32] BERMAN H M, WESTBROOK J, FENG Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-242.
[33] JO S, KIM T, IYER VG, et al. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008;29(11):1859-1865.
[34] MARK P, NILSSON L. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations.J Comput Chem. 2002; 23(13):1211-1219.
[35] JIA G, JIANG X, LI Z, et al. Decoding the Mechanism of Shen Qi Sha Bai Decoction in Treating Acute Myeloid Leukemia Based on Network Pharmacology and Molecular Docking. Front Cell Dev Biol. 2021:9:796757.
[36] SHANGARY S, WANG S. Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res. 2008;14(17):5318-5324.
[37] MARVALIM C, DATTA A, LEE SC. Role of p53 in breast cancer progression: An insight into p53 targeted therapy. Theranostics. 2023;13(4):1421-1442.
[38] CASSIER P A, CASTETS M, BELHABRI A, et al. Targeting apoptosis in acute myeloid leukaemia. Br J Cancer. 2017;117(8):1089-1098.
[39] YANG X, WANG J. Precision therapy for acute myeloid leukemia. J Hematol Oncol. 2018;11(1):3.
[40] BULLINGER L, DöHNER K, DöHNER H. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. J Clin Oncol. 2017;35(9):934-946.
[41] GRIMWADE D, IVEY A, HUNTLY BJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance.Blood. 2016;127(1):29-41.
[42] GAO X, ZUO X, MIN T, et al. Traditional Chinese medicine for acute myelocytic leukemia therapy: exploiting epigenetic targets. Front Pharmacol. 2024;15:1388903.
[43] MILLER WH JR, SCHIPPER HM, LEE JS, et al. Mechanisms of action of arsenic trioxide. Cancer Res. 2002;62(14):3893-3903.
[44] SHEN ZX, SHI ZZ, FANG J, et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 2004;101(15):5328-5335.
[45] ESTEY E, GARCIA-MANERO G, FERRAJOLI A, et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood. 2006;107(9):3469-3473.
[46] LALLEMAND-BREITENBACH V, DE THÉ H. Retinoic acid plus arsenic trioxide, the ultimate panacea for acute promyelocytic leukemia?. Blood. 2013;122(12):2008-2010.
[47] BURNETT AK, RUSSELL NH, HILLS RK, et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015;16(13):1295-1305.
[48] HUANG Z, YANG Y, FAN X, et al. Network pharmacology-based investigation and experimental validation of the mechanism of scutellarin in the treatment of acute myeloid leukemia. Front Pharmacol. 2022;13:952677.
[49] WANG X, WANG Y, CHEN J, et al. On the mechanism of wogonin against acute monocytic leukemia using network pharmacology and experimental validation. Sci Rep. 2024;14(1):10114.
[50] ZHAO L, ZHANG H, LI N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023;309:116306.
[51] JIANG M, LI J, WU J, et al. Case report: A rare case of TBL1XR1-RARB positive acute promyelocytic leukemia in child and review of the literature.Front Oncol. 2022;12:1028089.
[52] FANG D D, TANG Q, KONG Y, et al. MDM2 inhibitor APG-115 exerts potent antitumor activity and synergizes with standard-of-care agents in preclinical acute myeloid leukemia models. Cell Death Discov. 2021;7(1):90.
[53] KONOPLEVA M Y, RöLLIG C, CAVENAGH J, et al. Idasanutlin plus cytarabine in relapsed or refractory acute myeloid leukemia: results of the MIRROS trial. Blood Adv. 2022;6(14):4147-4156.
[54] MATOU-NASRI S, NAJDI M, ALSAUD NA, et al. Blockade of p38 MAPK overcomes AML stem cell line KG1a resistance to 5-Fluorouridine and the impact on miRNA profiling. PLoS One. 2022;17(5):e0267855.
[55] YUAN TL, CANTLEY LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):5497-510.
[56] BERTACCHINI J, HEIDARI N, MEDIANI L, et al. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci. 2015;72(12): 2337-2347.
[57] LI J, QU P, ZHOU XZ, et al. Pimozide inhibits the growth of breast cancer cells by alleviating the Warburg effect through the P53 signaling pathway. Biomed Pharmacother. 2022;150:113063.
[58] HE J, ZHU G, GAO L, et al. Fra-1 is upregulated in gastric cancer tissues and affects the PI3K/Akt and p53 signaling pathway in gastric cancer.Int J Oncol. 2015;47(5):1725-1734.
[59] JAMAL SME, ALAMODI A, WAHL RU, et al. Melanoma stem cell maintenance and chemo-resistance are mediated by CD133 signal to PI3K-dependent pathways. Oncogene. 2020;39(32):5468-5478.
[60] YAO Y, ZHANG Q, LI Z, et al. MDM2: current research status and prospects of tumor treatment. Cancer Cell Int. 2024;24(1):170.
[61] BRUMMER T, ZEISER R. The role of the MDM2/p53 axis in antitumor immune responses. Blood. 2024;143(26):2701-2709.
[62] KOJIMA K, KONOPLEVA M, SAMUDIO I J, et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood.2005;106(9):3150-3159.
[63] SHANGARY S, WANG S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol. 2009;49:223-241.
[64] HU J, CAO J, TOPATANA W, et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol. 2021; 14(1):157.
[65] LIU F, LI X, YAN H, et al. Downregulation of CPT2 promotes proliferation and inhibits apoptosis through p53 pathway in colorectal cancer.Cell Signal. 2022;92:110267.
[66] FREEDMAN DA, WU L, LEVINE AJ. Functions of the MDM2 oncoprotein. Cell Mol Life Sci. 1999;55(1):96-107.
|