COHEN RV, AZEVEDO MA, LE ROUX CW, et al. Metabolic/Bariatric Surgery is Safe and Effective in People with Obesity, Type 2 Diabetes Mellitus and Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Obes Surg. 2024;34(11): 4097-4105.
[2] CHAI J, WANG Y, GUO S, et al. Proteomics exploration of metformin hydrochloride for diabetic kidney disease treatment via the butanoate metabolism pathway. J Pharm Biomed Anal. 2025;254:116584.
[3] YOU L, HONG X, FENG Q, et al. Glucose Metabolism Indices and the Development of Chronic Kidney Disease: A Cohort Study of Middle-Aged and Elderly Chinese Persons. Int J Endocrinol. 2023;2023: 1412424.
[4] LIU PT, CHEN JD. The Associations Between Abdominal Obesity and Coronary Artery Calcification in Chronic Kidney Disease Population. Int J Nephrol Renovasc Dis. 2024;17:39-45.
[5] EPHRAIM RKD, AHORDZOR F, ASARE KK, et al. Abnormal Obesity Phenotype Is Associated with Reduced eGFR among Diabetes Mellitus and Hypertensive Patients in a Peri-Urban Community in Ghana. Int J Nephrol. 2022;2022:2739772.
[6] FAN R, KONG J, ZHANG J, et al. Exercise as a therapeutic approach to alleviate diabetic kidney disease: mechanisms, clinical evidence and potential exercise prescriptions. Front Med (Lausanne). 2024;11: 1471642.
[7] HOSHINO J, OHIGASHI T, TSUNODA R, et al. Physical activity and renal outcome in diabetic and non-diabetic patients with chronic kidney disease stage G3b to G5. Sci Rep. 2024;14(1):26378.
[8] SABERI S, ASKARIPOUR M, KHAKSARI M, et al. Exercise training improves diabetic renal injury by reducing fetuin-A, oxidative stress and inflammation in type 2 diabetic rats. Heliyon. 2024;10(6):e27749.
[9] HSIEH MC, TSAI WH, JHENG YP, et al. Author Correction: The beneficial effects of Lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: a randomized, double-blinded, placebo-controlled trial. Sci Rep. 2020;10(1):3872.
[10] LI G, FENG H, MAO XL, et al. The effects of probiotics supplementation on glycaemic control among adults with type 2 diabetes mellitus: a systematic review and meta-analysis of randomised clinical trials. J Transl Med. 2023;21(1):442.
[11] REED MJ, MESZAROS K, ENTES LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000; 49(11):1390-1394.
[12] 莫伟彬,杨衍滔,郭艳菊,等.益生菌干预对运动大鼠胃肠激素与AQP4表达的影响[J].中国实验动物学报,2018,26(4):411-417.
[13] CHEN YM, WEI L, CHIU YS, et al. Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients. 2016;8(4):205.
[14] PLOUG T, STALLKNECHT BM, PEDERSEN O, et al. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol. 1990;259(6 Pt 1):E778-786.
[15] MUNDEL P, REISER J. Proteinuria: an enzymatic disease of the podocyte? Kidney Int. 2010;77(7):571-580.
[16] JUNG I, NAM S, LEE DY, et al. Association of Succinate and Adenosine Nucleotide Metabolic Pathways with Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J. 2024;48(6):1126-1134.
[17] SUN X, ZHOU X, LI S, et al. Association between frequency of self-monitoring of blood glucose and glycemic control in patients with type 2 diabetes. Diabetes Res Clin Pract. 2024;209:111027.
[18] YARLAGADDA C, ABUTINEH M, REDDY AJ, et al. An Investigation on the Efficacy of Glucagon-Like Peptide 1 Receptor Agonists Drugs in Reducing Urine Albumin-to-Creatinine Ratio in Patients With Type 2 Diabetes: A Potential Treatment for Diabetic Nephropathy. Cureus. 2023;15(3):e36438.
[19] HUANG XM, MA X, LU JY, et al. Relationship between serum IL-6, VAP-1, Cys C, Scr, BUN, and type 2 diabetic kidney disease. Minerva Endocrinol (Torino). 2023;48(1):121-122.
[20] YUAN HQ, MIAO JX, XU JP, et al. Increased serum cystatin C levels and responses of pancreatic α- and β-cells in type 2 diabetes. Endocr Connect. 2022;11(3):e210597.
[21] 庄云,高现芬,吴畏.尿清蛋白/肌酐、胱抑素C对早期糖尿病肾病患者的诊断效果分析[J].糖尿病新世界,2024,27(15):52-55.
[22] 范丽妃,郭玉琴,林敏,等.基于自噬途径探讨补阳还五汤合抵挡汤改善尿酸性肾病大鼠肾脏损伤的作用机制[J].中华中医药杂志,2024,39(8):3989-3995.
[23] BONORA BM, MORIERI ML, MARASSI M, et al. Improved prediction of long-term kidney outcomes in people with type 2 diabetes by levels of circulating haematopoietic stem/progenitor cells. Diabetologia. 2023;66(12):2346-2355.
[24] TUTTLE KR, AGARWAL R, ALPERS CE, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022; 102(2):248-260.
[25] BAI Y, LI H, DONG J. Up-regulation of miR-20a weakens inflammation and apoptosis in high-glucose-induced renal tubular cell mediating diabetic kidney disease by repressing CXCL8 expression. Arch Physiol Biochem. 2022;128(6):1603-1610.
[26] ZAMANI B, TABATABIZADEH SM, GILASI H, et al. Effects of pioglitazone and linagliptin on glycemic control, lipid profile and hs-CRP in metformin-treated patients with type 2 diabetes: a comparative study. Horm Mol Biol Clin Investig. 2023;44(4):385-391.
[27] DAVARI M, HASHEMI R, MIRMIRAN P, et al. Effects of cinnamon supplementation on expression of systemic inflammation factors, NF-kB and Sirtuin-1 (SIRT1) in type 2 diabetes: a randomized, double blind, and controlled clinical trial. Nutr J. 2020;19(1):1.
[28] LIU J, ZHUANG Y, WU J, et al. IKKβ mediates homeostatic function in inflammation via competitively phosphorylating AMPK and IκBα. Acta Pharm Sin B. 2022;12(2):651-664.
[29] 王晓娟,刘素筠.罗格列酮对糖尿病大鼠肾脏中磷酸化IKK和IκBα表达及肾组织超微结构改变的影响[J].实用糖尿病杂志,2011, 7(1):26-27.
[30] 余杭林,向秋,田浩冬,等.高强度间歇性训练干预2型糖尿病患者糖脂代谢及炎症因子的变化[J/OL].中国免疫学杂志,1-10[2025-04-08].http://kns.cnki.net/kcms/detail/22.1126.r.20241202.1418.002.html.
[31] OTHMAN MA, FADEL R, TAYEM Y, et al. Caffeine protects against hippocampal alterations in type 2 diabetic rats via modulation of gliosis, inflammation and apoptosis. Cell Tissue Res. 2023;392(2):443-466.
[32] BAGHERI F, AMRI J, SALEHI M, et al. Effect of Artemisia absinthium ethanolic extract on oxidative stress markers and the TLR4, S100A4, Bax and Bcl-2 genes expression in the kidney of STZ-induced diabetic rats. Horm Mol Biol Clin Investig. Horm Mol Biol Clin Investig. 2020;41(4):1-10.
[33] JOSEPH L, SRINIVASAN KK. Triacontanoic ester of 5’’-hydroxyjustisolin: Tumour suppressive role in cervical cancer via Bcl-2, BAX and caspase-3 mediated signalling. Toxicol Rep. 2019;6:1198-1205.
[34] WANG Y, SUN H, ZHANG J, et al. Streptozotocin-induced diabetic cardiomyopathy in rats: ameliorative effect of PIPERINE via Bcl2, Bax/Bcl2, and caspase-3 pathways. Biosci Biotechnol Biochem. 2020; 84(12):2533-2544.
[35] YUQIANG C, LISHA Z, JIEJUN W, et al. Pifithrin-α ameliorates glycerol induced rhabdomyolysis and acute kidney injury by reducing p53 activation. Ren Fail. 2022;44(1):473-481.
[36] AHMED OM, EBAID H, EL-NAHASS ES, et al. Nephroprotective Effect of Pleurotus ostreatus and Agaricus bisporus Extracts and Carvedilol on Ethylene Glycol-Induced Urolithiasis: Roles of NF-κB, p53, Bcl-2, Bax and Bak. Biomolecules. 2020;10(9):1317.
[37] AHMED OM, ALI TM, ABDEL GAID MA, et al. Effects of enalapril and paricalcitol treatment on diabetic nephropathy and renal expressions of TNF-α, p53, caspase-3 and Bcl-2 in STZ-induced diabetic rats. PLoS One. 2019;14(9):e0214349.
[38] 刘俊峰,孙晓娟,吴迪,等.苁归益肾胶囊对DKD大鼠血管内皮损伤的保护作用及VCAM-1、Bcl-2、Bax、Caspase-3表达的影响[J].新疆医科大学学报,2022,45(8):896-900.
[39] 程丽彩,何玉秀.补充葛根素对力竭游泳训练大鼠海马细胞凋亡及Bcl-2、P53蛋白表达的影响[J].中国运动医学杂志,2010,29(3): 332-334.
[40] ALIPOUR MR, NADERI R, ALIHEMMATI A, et al. Swimming training attenuates pancreatic apoptosis through miR-34a/Sirtu in1/P53 Axis in high-fat diet and Streptozotocin-induced Type-2 diabetic rats. J Diabetes Metab Disord. 2020;19(2):1439-1446.
[41] MORGAN D, GARG M, TERGAONKAR V, et al. Pharmacological significance of the non-canonical NF-κB pathway in tumorigenesis. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188449.
[42] ZHANG C, WANG X, WANG C, et al. Qingwenzhike Prescription Alleviates Acute Lung Injury Induced by LPS via Inhibiting TLR4/NF-kB Pathway and NLRP3 Inflammasome Activation. Front Pharmacol. 2021;12:790072.
[43] PAQUISSI FC, ABENSUR H. The Th17/IL-17 Axis and Kidney Diseases, With Focus on Lupus Nephritis. Front Med (Lausanne). 2021;8:654912.
[44] WU Y, XIAO W, PEI C, et al. Astragaloside IV alleviates PM2.5-induced lung injury in rats by modulating TLR4/MyD88/NF-κB signalling pathway. Int Immunopharmacol. 2021;91:107290.
[45] LUO Q, HUANG S, ZHAO L, et al. Chang qing formula ameliorates colitis-associated colorectal cancer via suppressing IL-17/NF-κB/STAT3 pathway in mice as revealed by network pharmacology study. Front Pharmacol. 2022;13:893231.
[46] MOHAMED YT, SALAMA A, RABIE MA, et al. Neuroprotective effect of secukinumab against rotenone induced Parkinson’s disease in rat model: Involvement of IL-17, HMGB-1/TLR4 axis and BDNF/TrKB cascade. Int Immunopharmacol. 2023;114:109571.
[47] QIU D, SONG S, CHEN N, et al. NQO1 alleviates renal fibrosis by inhibiting the TLR4/NF-κB and TGF-β/Smad signaling pathways in diabetic nephropathy. Cell Signal. 2023;108:110712.
[48] SUN T, DONG W, JIANG G, et al. Cordyceps militaris Improves Chronic Kidney Disease by Affecting TLR4/NF-κB Redox Signaling Pathway. Oxid Med Cell Longev. 2019;2019:7850863.
[49] 池杨峰,刘爽,黄洁波,等.黄芪汤通过TLR4/NF-κB信号通路改善糖尿病肾病大鼠炎症反应的研究[J].临床肾脏病杂志,2022, 22(1):39-45.
|