中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (9): 1913-1922.doi: 10.12307/2025.160
• 骨与关节综述 bone and joint review • 上一篇 下一篇
余 帅,刘家伟,朱 彬,潘 檀,李兴龙,孙广峰,于海洋,丁 亚,王宏亮
收稿日期:
2024-02-02
接受日期:
2024-03-16
出版日期:
2025-03-28
发布日期:
2024-10-11
通讯作者:
王宏亮,安徽省阜阳市人,主任医师,蚌埠医学院附属阜阳市人民医院骨科关节及创伤病区,安徽省阜阳市 236000
丁亚,安徽省六安市人,硕士,主治医师,蚌埠医学院附属阜阳市人民医院骨科关节及创伤病区,安徽省阜阳市 236000
作者简介:
余帅,男,1999年生,河南省许昌市人,汉族,医师。
刘家伟,男,河南省安阳市人,汉族,医师。
基金资助:
Yu Shuai, Liu Jiawei, Zhu Bin, Pan Tan, Li Xinglong, Sun Guangfeng, Yu Haiyang, Ding Ya, Wang Hongliang
Received:
2024-02-02
Accepted:
2024-03-16
Online:
2025-03-28
Published:
2024-10-11
Contact:
Wang Hongliang, Chief physician, Department of Orthopedics, Joint and Trauma, Fuyang People’s Hospital, Bengbu Medical University, Fuyang 236000, Anhui Province, China
Ding Ya, Master, Attending physician, Department of Orthopedics, Joint and Trauma, Fuyang People’s Hospital, Bengbu Medical University, Fuyang 236000, Anhui Province, China
About author:
Yu Shuai, Physician, Department of Orthopedics, Joint and Trauma, Fuyang People’s Hospital, Bengbu Medical University, Fuyang 236000, Anhui Province, China
Liu Jiawei, Physician, Department of Orthopedics, Joint and Trauma, Fuyang People’s Hospital, Bengbu Medical University, Fuyang 236000, Anhui Province, China
Yu Shuai and Liu Jiawei contributed equally to this article.
Supported by:
摘要:
文题释义:
小分子药物:主要是指分子质量小于1 kD的有机化合物,小分子药物结构具有良好的空间分散性,其通常是信号传导抑制剂,能够特异性地阻断肿瘤生长、增殖过程中所必需的信号传导通路,从而达到治疗的目的。结果与结论:①目前对于骨关节炎发病机制的研究尚不明确,骨关节炎的发生发展与蛋白质、细胞因子及信号转导通路的关系较为密切,因此其治疗机制较为复杂,当前通过小分子药物靶向骨关节炎相关的蛋白质、细胞因子及信号转导通路成为一大研究热点。②小分子药物通常具有明确的细胞内或细胞外靶点和疗效,包括增强软骨修复、抑制关节退化、减轻炎症和缓解疼痛,另外一些抗骨关节炎的小分子药物在促进干细胞软骨分化和软骨基质重建方面显示出前景。③目前对于小分子药物靶向骨关节炎的病理生理过程从而延缓骨关节炎的进展,还处于实验性阶段,但这些小分子药物在实验过程中大部分都表现出预期的结果,目前并无相关研究说明小分子药物治疗骨关节炎的疗效。④小分子药物治疗骨关节炎在基础实验阶段已经达到了预期的实验结果,大量研究表明,小分子药物可以靶向抑制引起骨关节炎的特定蛋白质、细胞因子及信号转导通路,从而治疗骨关节炎,但其安全性和有效性等问题还需要进一步的基础和临床研究进行验证,这一过程需要更多的学者进行探索和研究。⑤目前国内外有许多学者针对骨关节炎的治疗做出了贡献,比起传统治疗方式而言,小分子药物在基础实验阶段表现出更好的疗效和安全性,有望成为未来骨关节炎治疗的新兴方法,为骨关节炎患者摆脱痛苦。
中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程
中图分类号:
余 帅, 刘家伟, 朱 彬, 潘 檀, 李兴龙, 孙广峰, 于海洋, 丁 亚, 王宏亮. 小分子药物治疗骨关节炎的热点问题及应用前景[J]. 中国组织工程研究, 2025, 29(9): 1913-1922.
Yu Shuai, Liu Jiawei, Zhu Bin, Pan Tan, Li Xinglong, Sun Guangfeng, Yu Haiyang, Ding Ya, Wang Hongliang. Hot issues and application prospects of small molecule drugs in treatment of osteoarthritis[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1913-1922.
[1] 中华医学会骨科学分会关节外科学组,中国医师协会骨科医师分会骨关节炎学组,湘雅医院国家老年疾病临床医学研究中心,等.中国骨关节炎诊疗指南(2021年版)[J].中华骨科杂志,2021,41(18):1291-1314. [2] DA CB, PEREIRA TV, SAADAT P, et al. Effectiveness and safety of non-steroidal anti-inflammatory drugs and opioid treatment for knee and hip osteoarthritis: network meta-analysis. BMJ. 2021;375:n2321. [3] WANG J, ZENG J, LIU Z, et al. Promising strategies for transdermal delivery of arthritis drugs: microneedle systems. Pharmaceutics. 2022;14(8):1736. [4] JACKSON RW. Memories of the early days of arthroscopy: 1965-1975. The formative years. Arthroscopy. 1987;3(1):1-3. [5] KRUEGER FJ. A vitallium replica arthroplasty on the shoulder; a case report of aseptic necrosis of the proximal end of the humerus. Surgery. 1951; 30(6):1005-1011. [6] COVENTRY MB. Osteotomy of the upper portion of the tibia for degenerative arthritis of the knee. A preliminary report. J Bone Joint Surg Am. 1965;47:984-990. [7] 中华医学会骨科学分会.骨关节炎诊治指南(2007年版)[J].中华骨科杂志,2007,27(10):793-796. [8] CHERIAN JJ, KAPADIA BH, MCELROY MJ, et al. Knee osteoarthritis: does transcutaneous electrical nerve stimulation work? Orthopedics. 2016;39(1): e180-e186. [9] SHI Y, HU X, CHENG J, et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun. 2019;10(1):1914. [10] HU Q, ECKER M. Overview of MMP13 as a promising target for the treatment of osteoarthritis. Int J Mol Sci. 2021;22(4):1742. [11] LU J, FENG X, ZHANG H, et al. Maresin-1 suppresses IL-1beta-induced MMP13 secretion by activating the PI3K/AKT pathway and inhibiting the NF-kappaB pathway in synovioblasts of an osteoarthritis rat model with treadmill exercise. Connect Tissue Res. 2021;62(5):508-518. [12] WANG Y, GUO X, FAN X, et al. The protective effect of mangiferin on osteoarthritis: An in vitro and in vivo study. Physiol Res. 2022;71(1):135-145. [13] KARLAPUDI V, SUNKARA KB, KONDA PR, et al. Efficacy and safety of aflapin(R), a novel boswellia serrata extract, in the treatment of osteoarthritis of the knee: a short-term 30-day randomized, double-blind, placebo-controlled clinical study. J Am Nutr Assoc. 2023;42(2):159-168. [14] MA T, RUAN H, LV L, et al. Oleanolic acid, a small-molecule natural product, inhibits ECM degeneration in osteoarthritis by regulating the Hippo/YAP and Wnt/beta-catenin pathways. Food Funct. 2023;14(22):9999-10013. [15] LOPEZ J, AL-NAKKASH L, BRODERICK TL, et al. Genistein suppresses IL-6 and MMP13 to attenuate osteoarthritis in obese diabetic mice. Metabolites. 2023;13(9):1014. [16] LI T, PENG J, LI Q, et al. The mechanism and role of ADAMTS protein family in osteoarthritis. Biomolecules. 2022;12(7):959. [17] HO YJ, LU JW, HO LJ, et al. Anti-inflammatory and anti-osteoarthritis effects of Cm-02 and Ck-02. Biochem Biophys Res Commun. 2019;517(1):155-163. [18] SIEBUHR AS, WERKMANN D, BAY-JENSEN AC, et al. The Anti-ADAMTS-5 nanobody((R)) M6495 protects cartilage degradation Ex Vivo. Int J Mol Sci. 2020;21(17):5992. [19] LI H, WEI Y, YANG Z, et al. Safety, Tolerability, pharmacokinetics, and pharmacodynamics of alirocumab in healthy chinese subjects: a randomized, double-blind, placebo-controlled, ascending single-dose study. Am J Cardiovasc Drugs. 2020;20(5):489-503. [20] MA TW, WEN YJ, SONG XP, et al. Puerarin inhibits the development of osteoarthritis through antiinflammatory and antimatrix-degrading pathways in osteoarthritis-induced rat model. Phytother Res. 2021;35(5):2579-2593. [21] CLEMENT-LACROIX P, LITTLE CB, SMITH MM, et al. Pharmacological characterization of GLPG1972/S201086, a potent and selective small-molecule inhibitor of ADAMTS5. Osteoarthritis Cartilage. 2022;30(2):291-301. [22] ZHAO P, LIU D, SONG C, et al. Discovery of isoindoline amide derivatives as potent and orally bioavailable ADAMTS-4/5 inhibitors for the treatment of osteoarthritis. ACS Pharmacol Transl Sci. 2022;5(7):458-467. [23] ZHONG G, LONG H, CHEN F, et al. Oxoglaucine mediates Ca(2+) influx and activates autophagy to alleviate osteoarthritis through the TRPV5/calmodulin/CAMK-II pathway. Br J Pharmacol. 2021;178(15):2931-2947. [24] ZHANG Y, LIN Z, CHEN D, et al. CY-09 attenuates the progression of osteoarthritis via inhibiting NLRP3 inflammasome-mediated pyroptosis. Biochem Biophys Res Commun. 2021;553:119-125. [25] ZHANG X, DONG Y, DONG H, et al. Telmisartan mitigates TNF-alpha-Induced type II collagen reduction by upregulating SOX-9. ACS Omega. 2021;6(17): 11756-11761. [26] ALLAEYS I, RIBEIRO DVF, BOURGOIN SG, et al. Human inflammatory neutrophils express genes encoding peptidase inhibitors: production of elafin mediated by NF-kappaB and CCAAT/enhancer-binding protein beta. J Immunol. 2021;206(8):1943-1956. [27] LIU FC, HUANG HS, HUANG CY, et al. A benzamide-linked small molecule HS-Cf inhibits TNF-alpha-induced interferon regulatory factor-1 in porcine chondrocytes: a potential disease-modifying drug for osteoarthritis therapeutics. J Clin Immunol. 2011;31(6):1131-1142. [28] GONG Y, QIU J, YE J, et al. AZ-628 delays osteoarthritis progression via inhibiting the TNF-alpha-induced chondrocyte necroptosis and regulating osteoclast formation. Int Immunopharmacol. 2022;111:109085. [29] WANG C, GAO Y, ZHANG Z, et al. Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-kappaB/SIRT1/AMPK signaling pathways. Phytomedicine. 2020;78:153305. [30] CHEN X, LI Z, HONG H, et al. Xanthohumol suppresses inflammation in chondrocytes and ameliorates osteoarthritis in mice. Biomed Pharmacother. 2021;137:111238. [31] ZHENG W, ZHOU T, ZHANG Y, et al. Simplified alpha(2)-macroglobulin as a TNF-alpha inhibitor for inflammation alleviation in osteoarthritis and myocardial infarction therapy. Biomaterials. 2023,301:122247. [32] WANG F, LIU J, CHEN X, et al. IL-1beta receptor antagonist (IL-1Ra) combined with autophagy inducer (TAT-Beclin1) is an effective alternative for attenuating extracellular matrix degradation in rat and human osteoarthritis chondrocytes. Arthritis Res Ther. 2019;21(1):171. [33] CONAGHAN PG, COOK AD, HAMILTON JA, et al. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat Rev Rheumatol. 2019;15(6):355-363. [34] PIROZZI C, FRANCISCO V, GUIDA FD, et al. Butyrate Modulates Inflammation in Chondrocytes via GPR43 Receptor. Cell Physiol Biochem. 2018;51(1): 228-243. [35] WANG Z, HUANG J, ZHOU S, et al. Anemonin attenuates osteoarthritis progression through inhibiting the activation of IL-1beta/NF-kappaB pathway. J Cell Mol Med. 2017;21(12):3231-3243. [36] OHZONO H, HU Y, NAGIRA K, et al. Targeting FoxO transcription factors with HDAC inhibitors for the treatment of osteoarthritis. Ann Rheum Dis. 2023;82(2):262-271. [37] CHERIFI C, MONTEAGUDO S, LORIES RJ. Promising targets for therapy of osteoarthritis: a review on the Wnt and TGF-beta signalling pathways. Ther Adv Musculoskelet Dis. 2021;13:1759720X211006959. [38] LORIES RJ, MONTEAGUDO S. Review article: is wnt signaling an attractive target for the treatment of osteoarthritis? Rheumatol Ther. 2020;7(2):259-270. [39] HUANG J, CHEN C, LIANG C, et al. Dysregulation of the Wnt signaling pathway and synovial stem cell dysfunction in osteoarthritis development. Stem Cells Dev. 2020;29(7):401-413. [40] LIETMAN C, WU B, LECHNER S, et al. Inhibition of Wnt/beta-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight. 2018;3(3):e96308. [41] YU SM, KIM SJ. Salinomycin causes dedifferentiation via the extracellular signal-regulated kinase (ERK) pathway in rabbit articular chondrocytes. J Pharmacol Sci. 2015;127(2):196-202. [42] ZHOU J, LIU S, WANG Y, et al. Salinomycin effectively eliminates cancer stem-like cells and obviates hepatic metastasis in uveal melanoma. Mol Cancer. 2019;18(1):159. [43] CHEN J, LIU J, CHEN S, et al. Salinomycin alleviates osteoarthritis progression via inhibiting Wnt/beta-catenin signaling. Int Immunopharmacol. 2022; 112:109225. [44] DESHMUKH V, HU H, BARROGA C, et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage. 2018; 26(1):18-27. [45] YAZICI Y, MCALINDON TE, FLEISCHMANN R, et al. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. Osteoarthritis Cartilage. 2017;25(10):1598-1606. [46] XU Y, ZHANG M, YANG W, et al. Nootkatone protects cartilage against degeneration in mice by inhibiting NF-kappaB signaling pathway. Int Immunopharmacol. 2021;100:108119. [47] LEE KT, CHEN BC, LIU SC, et al. Nesfatin-1 facilitates IL-1beta production in osteoarthritis synovial fibroblasts by suppressing miR-204-5p synthesis through the AP-1 and NF-kappaB pathways. Aging (Albany NY). 2021;13(18):22490-22501. [48] CATHELINE SE, BELL RD, OLUOCH LS, et al. IKKbeta-NF-kappaB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice. Sci Signal. 2021;14(701):eabf3535. [49] XU Z, SHEN Z H, WU B, et al. Small molecule natural compound targets the NF-kappaB signaling and ameliorates the development of osteoarthritis. J Cell Physiol. 2021;236(11):7298-7307. [50] WENG PW, YADAV VK, PIKATAN NW, et al. Novel NFkappaB inhibitor SC75741 mitigates chondrocyte degradation and prevents activated fibroblast transformation by modulating miR-21/GDF-5/SOX5 signaling. Int J Mol Sci. 2021;22(20):11082. [51] GUO L, SHAO W, ZHOU C, et al. Neratinib for HER2-positive breast cancer with an overlooked option. Mol Med. 2023;29(1):134. [52] QIU J, JIANG T, YANG G, et al. Neratinib exerts dual effects on cartilage degradation and osteoclast production in osteoarthritis by inhibiting the activation of the MAPK/NF-kappaB signaling pathways. Biochem Pharmacol. 2022;205:115155. [53] YAO Q, WU X, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):56. [54] WEN L, GAO M, HE Z, et al. Noggin, an inhibitor of bone morphogenetic protein signaling, antagonizes TGF-beta1 in a mouse model of osteoarthritis. Biochem Biophys Res Commun. 2021;570:199-205. [55] YOON HJ, KIM SB, SOMAIYA D, et al. Type II collagen and glycosaminoglycan expression induction in primary human chondrocyte by TGF-beta1. BMC Musculoskelet Disord. 2015;16:141. [56] LEE H, KIM H, SEO J, et al. TissueGene-C promotes an anti-inflammatory micro-environment in a rat monoiodoacetate model of osteoarthritis via polarization of M2 macrophages leading to pain relief and structural improvement. Inflammopharmacology. 2020;28(5):1237-1252. [57] DELL’ACCIO F, CAILOTTO F. Pharmacological blockade of the WNT-beta-catenin signaling: a possible first-in-kind DMOAD. Osteoarthritis Cartilage. 2018;26(1):4-6. [58] CONAGHAN PG, BOWES MA, KINGSBURY SR, et al. Disease-modifying effects of a novel cathepsin k inhibitor in osteoarthritis: a randomized controlled trial. Ann Intern Med. 2020;172(2):86-95. [59] NWOSU LN, GOWLER P, BURSTON JJ, et al. Analgesic effects of the cathepsin K inhibitor L-006235 in the monosodium iodoacetate model of osteoarthritis pain. Pain Rep. 2018;3(6):e685. [60] PELLETIER JP, KAPOOR M, FAHMI H, et al. Strontium ranelate reduces the progression of experimental dog osteoarthritis by inhibiting the expression of key proteases in cartilage and of IL-1beta in the synovium. Ann Rheum Dis. 2013;72(2):250-257. [61] ANTUNES BP, VAINIERI ML, ALINI M, et al. Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in fibrin-hyaluronan hydrogel by multi-axial mechanical loading and FGF18. Acta Biomater. 2020;105:170-179. [62] MULLER S, LINDEMANN S, GIGOUT A. Effects of sprifermin, IGF1, IGF2, BMP7, or CNP on bovine chondrocytes in monolayer and 3D culture. J Orthop Res. 2020;38(3):653-662. [63] HOCHBERG MC, GUERMAZI A, GUEHRING H, et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial. JAMA. 2019; 322(14):1360-1370. [64] GIGOUT A, GUEHRING H, FROEMEL D, et al. Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix. Osteoarthritis Cartilage. 2017;25(11):1858-1867. [65] WANG J, LI J, SONG D, et al. AMPK: implications in osteoarthritis and therapeutic targets. Am J Transl Res. 2020;12(12):7670-7681. [66] LI J, ZHANG B, LIU W X, et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann Rheum Dis. 2020;79(5):635-645. [67] SUN J, SONG FH, WU JY, et al. Sestrin2 overexpression attenuates osteoarthritis pain via induction of AMPK/PGC-1alpha-mediated mitochondrial biogenesis and suppression of neuroinflammation. Brain Behav Immun. 2022;102:53-70. [68] JIN Z, CHANG B, WEI Y, et al. Curcumin exerts chondroprotective effects against osteoarthritis by promoting AMPK/PINK1/Parkin-mediated mitophagy. Biomed Pharmacother. 2022;151:113092. |
[1] | 张艺博, 卢健棋, 毛美玲, 庞 延, 董 礼, 杨尚冰, 肖 湘. 类风湿关节炎与冠状动脉粥样硬化的因果关系:GWAS数据库血清代谢物和炎症因子数据[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[2] | 马 驰, 王 宁, 陈 拥, 魏志晗, 刘逢纪, 朴成哲. 3D打印个体化截骨导板结合定制钢板在开放楔形胫骨高位截骨中的应用[J]. 中国组织工程研究, 2025, 29(9): 1863-1869. |
[3] | 赵济宇, 王少伟. 叉头框转录因子O1信号通路与骨代谢[J]. 中国组织工程研究, 2025, 29(9): 1923-1930. |
[4] | 孙韫頔, 程露露, 万海丽, 常 赢, 熊雯娟, 夏 渊. 神经肌肉训练对膝骨关节炎患者疼痛和功能影响的Meta分析[J]. 中国组织工程研究, 2025, 29(9): 1945-1952. |
[5] | 邓柯淇, 李光第, GOSWAMI ASHUTOSH, 刘星余, 何孝勇. 基于生物信息学对骨关节炎铁超载关键基因的筛选与验证[J]. 中国组织工程研究, 2025, 29(9): 1972-1980. |
[6] | 尹 路, 蒋川锋, 陈俊杰, 易 明, 王子赫, 石厚银, 汪国友, 沈骅睿. 沙苑子苷A对关节软骨细胞凋亡的影响[J]. 中国组织工程研究, 2025, 29(8): 1541-1547. |
[7] | 王文涛, 侯振扬, 王熠军, 徐耀增. Apelin-13抑制巨噬细胞M1极化缓解全身炎症性骨丢失[J]. 中国组织工程研究, 2025, 29(8): 1548-1555. |
[8] | 陈 帅, 金 杰, 韩化伟, 田宁晟, 李志伟. 两样本孟德尔随机化分析循环炎症细胞因子与骨密度的因果关联[J]. 中国组织工程研究, 2025, 29(8): 1556-1564. |
[9] | 王佩光, 张小文, 麦美斯, 黎璐茜, 黄 浩. 广义估计方程评估浮针法联合穴位埋线治疗不同分期膝骨关节炎的疗效[J]. 中国组织工程研究, 2025, 29(8): 1565-1571. |
[10] | 李开颖, 魏晓歌, 宋 斐, 杨 楠, 赵振宁, 王 燕, 穆 静, 马惠昇. 理筋手法调控兔骨骼肌损伤修复中瘢痕形成的作用机制[J]. 中国组织工程研究, 2025, 29(8): 1600-1608. |
[11] | 于经邦, 吴亚云. 非编码RNA在肺纤维化过程中的调控作用[J]. 中国组织工程研究, 2025, 29(8): 1659-1666. |
[12] | 王秋月, 靳 攀, 蒲 锐. 运动干预与细胞焦亡在骨关节炎中的作用[J]. 中国组织工程研究, 2025, 29(8): 1667-1675. |
[13] | 袁维勃, 刘 婵, 余丽梅. 肝脏类器官在肝脏疾病模型与移植治疗中的应用潜力[J]. 中国组织工程研究, 2025, 29(8): 1684-1692. |
[14] | 赵嘉诚, 任诗齐, 祝 秦, 刘佳佳, 朱 翔, 杨 洋. 原发性骨质疏松潜在生物标志物的生物信息学分析[J]. 中国组织工程研究, 2025, 29(8): 1741-1750. |
[15] | 陈跃平, 陈 锋, 彭清林, 陈荟伊, 董盼锋. 三七治疗骨关节炎机制:基于UHPLC-QE-MS、网络药理学及分子动力学模拟[J]. 中国组织工程研究, 2025, 29(8): 1751-1760. |
1.1.6 检索策略 见图1。
1.3 文献质量评估和数据的提取 共检索到文献1 274篇,英文文献1 175篇,中文文献99篇,排除与研究目的相关性差及内容陈旧、质量不高及重复的文献1 206篇,纳入68篇符合标准的文献进行综述。文献检索流程见图2。
骨关节炎的病理生理过程中存在多种蛋白、信号通路及炎症介质等的参与,开发针对这些蛋白、信号通路及炎症介质等的小分子药物,可有效地延缓骨关节炎的进展并改善其临床表现。
#br#
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||