[1] AN B, FANG Y, WANG L, et al. Inhibition of TGF-beta1/Smad3 signaling by compound 5aa: A potential treatment for idiopathic pulmonary fibrosis. Bioorg Chem. 2024;147:107374.
[2] LU P, LI J, LIU C, et al. Salvianolic acid B dry powder inhaler for the treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci. 2022; 17(3):447-461.
[3] WU H, YU Y, HUANG H, et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell. 2021; 184(3):845-746.
[4] MENG L, XIAO J, WANG L, et al. Acute exacerbation of idiopathic pulmonary fibrosis disease: a diagnosis model in China. Eur J Med Res. 2024;29(1):198.
[5] GEORGE PM, PATTERSON CM, REED AK, et al. Lung transplantation for idiopathic pulmonary fibrosis. Lancet Respir Med. 2019;7(3):271-282.
[6] SULEWSKA A, NIKLINSKI J, CHARKIEWICZ R, et al. A Signature of 14 Long Non-Coding RNAs (lncRNAs) as a Step towards Precision Diagnosis for NSCLC. Cancers (Basel). 2022;14(2):439.
[7] NEMETH K, BAYRAKTAR R, FERRACIN M, et al. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3): 211-232.
[8] LI J H, LIU S, ZHOU H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92-97.
[9] BI H, FEI Q, LI R, et al. Disruption of miRNA sequences by TALENs and CRISPR/Cas9 induces varied lengths of miRNA production. Plant Biotechnol J. 2020;18(7):1526-1536.
[10] KINCAID RP, SULLIVAN CS. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog. 2012;8(12):e1003018.
[11] GARCIA-LOPEZ J, BRIENO-ENRIQUEZ MA, DEL MAZO J. MicroRNA biogenesis and variability. Biomol Concepts. 2013;4(4):367-380.
[12] PING Y, ZHOU Y, HU J, et al. Dissecting the Functional Mechanisms of Somatic Copy-Number Alterations Based on Dysregulated ceRNA Networks across Cancers. Mol Ther Nucleic Acids. 2020;21:464-479.
[13] HUANG Y, MA SF, VIJ R, et al. A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis. BMC Pulm Med. 2015;15:147.
[14] KADOTA T, FUJITA Y, ARAYA J, et al. Human bronchial epithelial cell-derived extracellular vesicle therapy for pulmonary fibrosis via inhibition of TGF-beta-WNT crosstalk. J Extracell Vesicles. 2021;10(10): e12124.
[15] CHANDA D, OTOUPALOVA E, SMITH SR, et al. Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med. 2019;65:56-69.
[16] CHILOSI M, POLETTI V, ROSSI A. The pathogenesis of COPD and IPF: distinct horns of the same devil? Respir Res. 2012;13(1):3.
[17] DINH PC, PAUDEL D, BROCHU H, et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun. 2020;11(1):1064.
[18] MORRISON TJ, JACKSON MV, CUNNINGHAM EK, et al. Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am J Respir Crit Care Med. 2017;196(10):1275-1286.
PANDIT KV, CORCORAN D, YOUSEF H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010;182(2):220-229.
[20] MAYR C, HEMANN MT, BARTEL DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007; 315(5818):1576-1579.
[21] LIANG H, XU C, PAN Z, et al. The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol Ther. 2014;22(6):1122-1133.
[22] LIANG H, GU Y, LI T, et al. Integrated analyses identify the involvement of microRNA-26a in epithelial-mesenchymal transition during idiopathic pulmonary fibrosis. Cell Death Dis. 2014;5(5):e1238.
[23] FERNANDEZ I E, EICKELBERG O. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet. 2012;380(9842):680-688.
[24] SUN J, LI Q, LIAN X, et al. MicroRNA-29b Mediates Lung Mesenchymal-Epithelial Transition and Prevents Lung Fibrosis in the Silicosis Model. Mol Ther Nucleic Acids. 2019;14:20-31.
[25] YAMADA Y, TAKANASHI M, SUDO K, et al. Novel form of miR-29b suppresses bleomycin-induced pulmonary fibrosis. PLoS One. 2017; 12(2):e0171957.
[26] WEI P, XIE Y, ABEL PW, et al. Transforming growth factor (TGF)-beta1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 2019;10(9): 670.
[27] BOUTZ PL, CHAWLA G, STOILOV P, et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 2007;21(1):71-84.
[28] CUI H, GE J, XIE N, et al. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence. Am J Respir Cell Mol Biol. 2017;56(2):168-178.
[29] YANG S, CUI H, XIE N, et al. miR-145 regulates myofibroblast differentiation and lung fibrosis. FASEB J. 2013;27(6):2382-2391.
[30] HUANG Y, XIE Y, ABEL PW, et al. TGF-beta1-induced miR-424 promotes pulmonary myofibroblast differentiation by targeting Slit2 protein expression. Biochem Pharmacol. 2020;180:114172.
[31] LINO CARDENAS CL, HENAOUI IS, COURCOT E, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet. 2013;9(2):e1003291.
[32] ADEL RM, HELAL H, AHMED FOUAD M, et al. Regulation of miRNA-155-5p ameliorates NETosis in pulmonary fibrosis rat model via inhibiting its target cytokines IL-1beta, TNF-alpha and TGF-beta1. Int Immunopharmacol. 2024;127:111456.
[33] PATTNAIK B, NEGI V, CHAUDHURI R, et al. MiR-326-mediated overexpression of NFIB offsets TGF-beta induced epithelial to mesenchymal transition and reverses lung fibrosis. Cell Mol Life Sci. 2023;80(12):357.
[34] DERRIEN T, JOHNSON R, BUSSOTTI G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775-1789.
[35] CAI R, TANG G, ZHANG Q, et al. A Novel lnc-RNA, Named lnc-ORA, Is Identified by RNA-Seq Analysis, and Its Knockdown Inhibits Adipogenesis by Regulating the PI3K/AKT/mTOR Signaling Pathway. Cells. 2019;8(5):477.
[36] TANG X, LI Y, LI M, et al. The role of long noncoding RNAs in regulating invasion and metastasis of malignant tumors. Anticancer Drugs. 2020; 31(4):319-325.
[37] LIN S, ZHANG R, XU L, et al. LncRNA Hoxaas3 promotes lung fibroblast activation and fibrosis by targeting miR-450b-5p to regulate Runx1. Cell Death Dis. 2020;11(8):706.
[38] ZHANG S, CHEN H, YUE D, et al. Long non-coding RNAs: Promising new targets in pulmonary fibrosis. J Gene Med. 2021;23(3):e3318.
[39] ZHAO X, SUN J, CHEN Y, et al. lncRNA PFAR Promotes Lung Fibroblast Activation and Fibrosis by Targeting miR-138 to Regulate the YAP1-Twist Axis. Mol Ther. 2018;26(9):2206-2217.
[40] SAVARY G, DEWAELES E, DIAZZI S, et al. The Long Noncoding RNA DNM3OS Is a Reservoir of FibromiRs with Major Functions in Lung Fibroblast Response to TGF-beta and Pulmonary Fibrosis. Am J Respir Crit Care Med. 2019;200(2):184-198.
[41] ZHANG J, WANG H, CHEN H, et al. ATF3 -activated accelerating effect of LINC00941/lncIAPF on fibroblast-to-myofibroblast differentiation by blocking autophagy depending on ELAVL1/HuR in pulmonary fibrosis. Autophagy. 2022;18(11):2636-2655.
[42] LIU H, WANG B, ZHANG J, et al. A novel lnc-PCF promotes the proliferation of TGF-beta1-activated epithelial cells by targeting miR-344a-5p to regulate map3k11 in pulmonary fibrosis. Cell Death Dis. 2017;8(10):e3137.
[43] CHANG L, ZHOU D, LUO S. Novel lncRNA LINC00941 Promotes Proliferation and Invasion of Colon Cancer Through Activation of MYC. Onco Targets Ther. 2021;14:1173-1186.
[44] WANG X, CHENG Z, DAI L, et al. Knockdown of Long Noncoding RNA H19 Represses the Progress of Pulmonary Fibrosis through the Transforming Growth Factor beta/Smad3 Pathway by Regulating MicroRNA 140. Mol Cell Biol. 2019;39(12):e00143-19.
[45] HUANG C, LIANG Y, ZENG X, et al. Long Noncoding RNA FENDRR Exhibits Antifibrotic Activity in Pulmonary Fibrosis. Am J Respir Cell Mol Biol. 2020;62(4):440-453.
[46] LI C, MENG X, WANG L, et al. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-beta/Smad signaling pathway. Front Pharmacol. 2023;14: 1092148.
[47] SUN J, JIN T, NIU Z, et al. LncRNA DACH1 protects against pulmonary fibrosis by binding to SRSF1 to suppress CTNNB1 accumulation. Acta Pharm Sin B. 2022;12(9):3602-3617.
[48] QIAN W, CAI X, QIAN Q, et al. lncRNA ZEB1-AS1 promotes pulmonary fibrosis through ZEB1-mediated epithelial-mesenchymal transition by competitively binding miR-141-3p. Cell Death Dis. 2019;10(2):129.
[49] LIU P, LUO G, DODSON M, et al. The NRF2-LOC344887 signaling axis suppresses pulmonary fibrosis. Redox Biol. 2021;38:101766.
[50] SUN J, GUO Y, CHEN T, et al. Systematic analyses identify the anti-fibrotic role of lncRNA TP53TG1 in IPF. Cell Death Dis. 2022;13(6):525.
[51] SUN H, CHEN J, QIAN W, et al. Integrated long non-coding RNA analyses identify novel regulators of epithelial-mesenchymal transition in the mouse model of pulmonary fibrosis. J Cell Mol Med. 2016;20(7):1234-1246.
[52] CAO G, ZHANG J, WANG M, et al. Differential expression of long non-coding RNAs in bleomycin-induced lung fibrosis. Int J Mol Med. 2013;32(2):355-364.
[53] ZHANG X, SHAO R. LncRNA SNHG8 upregulates MUC5B to induce idiopathic pulmonary fibrosis progression by targeting miR-4701-5p. Heliyon. 2024;10(1):e23233.
[54] GUAN Y, ZHANG J, CAI X, et al. Astragaloside IV inhibits epithelial-mesenchymal transition and pulmonary fibrosis via lncRNA-ATB/miR-200c/ZEB1 signaling pathway. Gene. 2024;897:148040.
[55] FU X, SONG X, NIU S, et al. LncRNA-mediated ceRNA network reveals the mechanism of action of Saorilao-4 decoction against pulmonary fibrosis. Front Genet. 2024;15:1339064.
[56] MORRIS KV, MATTICK JS. The rise of regulatory RNA. Nat Rev Genet. 2014;15(6):423-437.
[57] JECK WR, SORRENTINO JA, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141-157.
[58] ZHANG M, WANG S. Roles of circular RNAs in colorectal cancer. Oncol Lett. 2021;22(2):602.
[59] XIAO Y, PENG L, XU H, et al. Mechanism of Liver Regeneration During ALPPS. Front Cell Dev Biol. 2022;10:916286.
[60] LI R, WANG Y, SONG X, et al. Potential regulatory role of circular RNA in idiopathic pulmonary fibrosis. Int J Mol Med. 2018;42(6):3256-3268.
[61] QI F, LI Y, YANG X, et al. Hsa_circ_0044226 knockdown attenuates progression of pulmonary fibrosis by inhibiting CDC27. Aging (Albany NY). 2020;12(14):14808-14818.
[62] LIU W, FENG R, LI X, et al. TGF-beta- and lipopolysaccharide-induced upregulation of circular RNA PWWP2A promotes hepatic fibrosis via sponging miR-203 and miR-223. Aging (Albany NY). 2019;11(21):9569-9580.
[63] BAI J, DENG J, HAN Z, et al. CircRNA_0026344 via exosomal miR-21 regulation of Smad7 is involved in aberrant cross-talk of epithelium-fibroblasts during cigarette smoke-induced pulmonary fibrosis. Toxicol Lett. 2021;347: 58-66.
[64] LI J, CHEN X, ZHANG B, et al. Circ_0035796 depletion inhibits transforming growth factor-beta1-induced pulmonary fibrosis in a miR-150-5p/L1CAM-dependent manner. Autoimmunity. 2023;56(1):2250099.
[65] WU T, WU S, JIAO H, et al. Overexpression of hsa_circ_0001861 inhibits pulmonary fibrosis through targeting miR-296-5p/BCL-2 binding component 3 axis. Eur J Histochem. 2023;67(4):3839.
|