[1] MOTTA F, BARONE E, SICA A, et al. Inflammaging and Osteoarthritis. Clin Rev Allergy Immunol. 2023;64(2):222-238.
[2] ROEMER FW, WIRTH W, DEMEHRI S, et al. Imaging Biomarkers of Osteoarthritis. Semin Musculoskelet Radiol. 2024;28(1):14-25.
[3] WEN C, XIAO G. Advances in osteoarthritis research in 2021 and beyond. J Orthop Translat. 2022;32:A1-A2.
[4] 李辉,谢兴文,赵永利,等.中药有效成分防治骨关节炎的作用机制研究进展[J].中草药,2022,53(23):7543-7552.
[5] GUO D, YU M, GUO H, et al. Panax notoginseng saponins inhibits oxidative stress- induced human nucleus pulposus cell apoptosis and delays disc degeneration in vivo and in vitro. J Ethnopharmacol. 2024; 319(Pt 1):117166.
[6] JU L, HU P, CHEN P, et al. Huoxuezhitong capsule ameliorates MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway. Biomed Pharmacother. 2020;129:110471.
[7] 韩杰,陈跃平,莫坚,等.三七总皂苷干预激素性股骨头缺血坏死模型兔的超微结构评价[J].中国组织工程研究,2019, 23(7):1035-1039.
[8] ZHANG Y, CAI W, HAN G, et al. Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K‑AKT‑mTOR pathway in osteoarthritic chondrocytes. Int J Mol Med. 2020;45(4):1225-1236.
[9] FANG C, GUO JW, WANG YJ, et al. Diterbutyl phthalate attenuates osteoarthritis in ACLT mice via suppressing ERK/c-fos/NFATc1 pathway, and subsequently inhibiting subchondral osteoclast fusion. Acta Pharmacol Sin. 2022;43(5):1299-1310.
[10] MEIMEI C, FENGZHEN W, HUANGWEI L, et al. Discovery of Taxus chinensis fruit wine as potentially functional food against Alzheimer’s disease by UHPLC-QE-MS/MS, network pharmacology and molecular docking. J Food Biochem. 2022; 46(12):e14502.
[11] 牛明,张斯琴,张博,等.《网络药理学评价方法指南》解读[J].中草药,2021, 52(14):4119-4129.
[12] HU X, ZENG Z, ZHANG J, et al. Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chem. 2023;405(Pt A):134824.
[13] WANG Y, TAO X, GAO Y, et al. Study on the mechanism of Shujin Tongluo granules in treating cervical spondylosis based on network pharmacology and molecular docking. Medicine (Baltimore). 2023;102(29):e34030.
[14] TSAI CF, CHEN GW, CHEN YC, et al. Regulatory Effects of Quercetin on M1/M2 Macrophage Polarization and Oxidative/Antioxidative Balance. Nutrients. 2021;14(1):67.
[15] WANG L, HE C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol. 2022;13:967193.
[16] SUL OJ, RA SW. Quercetin Prevents LPS-Induced Oxidative Stress and Inflammation by Modulating NOX2/ROS/NF-kB in Lung Epithelial Cells. Molecules. 2021;26(22):6949.
[17] CHEN Y, XUE Y, WANG X, et al. Molecular mechanisms of the Guizhi decoction on osteoarthritis based on an integrated network pharmacology and RNA sequencing approach with experimental validation. Front Genet. 2023;14:1079631.
[18] MOON SJ, JEONG JH, JHUN JY, et al. Ursodeoxycholic Acid ameliorates pain severity and cartilage degeneration in monosodium iodoacetate-induced osteoarthritis in rats. Immune Netw. 2014; 14(1):45-53.
[19] ORŠOLIĆ N, NEMRAVA J, JELEČ Ž, et al. Antioxidative and Anti-Inflammatory Activities of Chrysin and Naringenin in a Drug-Induced Bone Loss Model in Rats. Int J Mol Sci. 2022;23(5):2872.
[20] 谭丹妮,向琴,俞赟丰,等.白虎加人参汤治疗肥胖症合并2型糖尿病的潜在活性成分及作用机制分析[J].中国实验方剂学杂志,2024,30(13):1-10.
[21] DAINESE P, WYNGAERT KV, DE MITS S, et al. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review. Osteoarthritis Cartilage. 2022;30(4):516-534.
[22] YU H, HUANG T, LU WW, et al. Osteoarthritis Pain. Int J Mol Sci. 2022;23(9):4642.
[23] HU X, NI S, ZHAO K, et al. Bioinformatics-Led Discovery of Osteoarthritis Biomarkers and Inflammatory Infiltrates. Front Immunol. 2022;13:871008.
[24] SHANG L, WANG Y, LI J, et al. Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J Ethnopharmacol. 2023;302(Pt A):115876.
[25] ZHANG J, FAN F, LIU A, et al. Icariin: A Potential Molecule for Treatment of Knee Osteoarthritis. Front Pharmacol. 2022;13: 811808.
[26] LI M, TIAN F, GUO J, et al. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol. 2023;14:1243820.
[27] WANG Y, PAN X, WANG J, et al. Exploration of Simiao-Yongan Decoction on knee osteoarthritis based on network pharmacology and molecular docking. Medicine (Baltimore). 2023; 102(40):e35193.
[28] TANG J, LIU T, WEN X, et al. Estrogen-related receptors: novel potential regulators of osteoarthritis pathogenesis. Mol Med. 2021;27(1):5.
[29] JIANG A, XU P, YANG Z, et al. Increased Sparc release from subchondral osteoblasts promotes articular chondrocyte degeneration under estrogen withdrawal. Osteoarthritis Cartilage. 2023;31(1):26-38.
[30] NI KN, YE L, ZHANG YJ, et al. Formononetin improves the inflammatory response and bone destruction in knee joint lesions by regulating the NF-kB and MAPK signaling pathways. Phytother Res. 2023;37(8):3363-3379.
[31] LIU Y, PENG H, MENG Z, et al. Correlation of IL-17 Level in Synovia and Severity of Knee Osteoarthritis. Med Sci Monit. 2015;21:1732-1736.
[32] ZHI X, WANG L, CHEN H, et al. l-tetrahydropalmatine suppresses osteoclastogenesis in vivo and in vitro via blocking RANK-TRAF6 interactions and inhibiting NF-κB and MAPK pathways. J Cell Mol Med. 2020;24(1):785-798.
[33] YANG S, XIE J, PAN Z, et al. Advanced glycation end products promote meniscal calcification by activating the mTOR-ATF4 positive feedback loop. Exp Mol Med. 2024; 56(3):630-645.
[34] YUAN Z, JIANG D, YANG M, et al. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg. 2024;16(3):532-550.
[35] WU X, XU LY, LI EM, et al. Application of molecular dynamics simulation in biomedicine. Chem Biol Drug Des. 2022; 99(5):789-800.
[36] LU C, PENG X, LU D. Molecular Dynamics Simulation of Protein Cages. Methods Mol Biol. 2023;2671:273-305. |