[1]
CLYNES MA, HARVEY NC, CURTIS EM, et al. The epidemiology of osteoporosis. Br Med Bull. 2020;133(1):105-117.
[2] KANIS JA, COOPER C, RIZZOLI R, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3-44.
[3] TEIGLAND C, PULUNGAN Z, SCHINKEL J, et al. Economic and Humanistic Burden Among Medicare-Aged Women With Fragility Fracture in the United States. J Am Med Dir Assoc. 2023;24(10):1533-1540.
[4] LEBOFF MS, GREENSPAN SL, INSOGNA KL, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022; 33(10):2049-2102.
[5] SAXENA Y, ROUTH S, MUKHOPADHAYA A. Immunoporosis: Role of Innate Immune Cells in Osteoporosis. Front Immunol. 2021;12:687037.
[6] ALIPPE Y, MBALAVIELE G. Omnipresence of inflammasome activities in inflammatory bone diseases. Semin Immunopathol. 2019;41(5):607-618.
[7] WANG L, HUANG S, LI S, et al. Efficacy and Safety of Umbilical Cord Mesenchymal Stem Cell Therapy for Rheumatoid Arthritis Patients: A Prospective Phase I/II Study. Drug Des Devel Ther. 2019;13: 4331-4340.
[8] YOKOTA K, SATO K, MIYAZAKI T, et al. Characterization and Function of Tumor Necrosis Factor and Interleukin-6-Induced Osteoclasts in Rheumatoid Arthritis. Arthritis Rheumatol. 2021;73(7):1145-1154.
[9] YAO Z, GETTING SJ, LOCKE IC. Regulation of TNF-Induced Osteoclast Differentiation. Cells. 2022;11(1):132.
[10] ILESANMI-OYELERE BL, SCHOLLUM L, KUHN-SHERLOCK B, et al. Inflammatory markers and bone health in postmenopausal women: a cross-sectional overview. Immun Ageing. 2019;16:15.
[11] BARBOUR KE, BOUDREAU R, DANIELSON ME, et al. Inflammatory markers and the risk of hip fracture: the Women’s Health Initiative. J Bone Miner Res. 2012;27(5):1167-1176.
[12] SKRIVANKOVA VW, RICHMOND RC, WOOLF BAR, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA. 2021; 326(16):1614-1621.
[13] DAVIES NM, HOLMES MV, DAVEY SMITH G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601.
[14] BOURAS E, KARHUNEN V, GILL D, et al. Circulating inflammatory cytokines and risk of five cancers: a Mendelian randomization analysis. BMC Med. 2022;20(1):3.
[15] WEI T, ZHU Z, LIU L, et al. Circulating levels of cytokines and risk of cardiovascular disease: a Mendelian randomization study. Front Immunol. 2023;14:1175421.
[16] BOWDEN J, DAVEY SMITH G, BURGESS S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512-525.
[17] XIANG M, WANG Y, GAO Z, et al. Exploring causal correlations between inflammatory cytokines and systemic lupus erythematosus: A Mendelian randomization. Front Immunol. 2022;13:985729.
[18] LIU H, LIU Z, HUANG Y, et al. Exploring causal association between circulating inflammatory cytokines and functional outcomes following ischemic stroke: A bidirectional Mendelian randomization study. Eur J Neurol. 2024;31(2):e16123.
[19] LAI R, YIN B, FENG Z, et al. The causal relationship between 41 inflammatory cytokines and hypothyroidism: bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne). 2023; 14:1332383.
[20] BOWDEN J, DAVEY SMITH G, HAYCOCK PC, et al. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016;40(4):304-314.
[21] BOWDEN J, DEL GRECO MF, MINELLI C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36(11):1783-1802.
[22] VERBANCK M, CHEN CY, NEALE B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693-698.
[23] PIERCE BL, BURGESS S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178(7):1177-1184.
[24] ZHANG W, GAO R, RONG X, et al. Immunoporosis: Role of immune system in the pathophysiology of different types of osteoporosis. Front Endocrinol (Lausanne). 2022;13:965258.
[25] CHARO IF, RANSOHOFF RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610-621.
[26] BAGGIOLINI M, CLARK-LEWIS I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307(1):97-101.
[27] FOUSEK K, HORN LA, PALENA C. Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacol Ther. 2021;219:107692.
[28] KANY S, VOLLRATH JT, RELJA B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019;20(23):6008.
[29] 卢守亮.绝经后骨质疏松症妇女血清IL-8、10水平及雌激素对去势大鼠血清IL-8、10水平影响[D]. 天津:天津医科大学,2013.
[30] LAM GY, DESAI S, FU J, et al. IL-8 correlates with reduced baseline femoral neck bone mineral density in adults with cystic fibrosis: a single center retrospective study. Sci Rep. 2021;11(1):15405.
[31] LEWIS DB, LIGGITT HD, EFFMANN EL, et al. Osteoporosis induced in mice by overproduction of interleukin 4. Proc Natl Acad Sci U S A. 1993;90(24):11618-11622.
[32] FISCHER V, HAFFNER-LUNTZER M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14-21.
[33] PARRA-TORRES AY, ENRíQUEZ J, JIMéNEZ-ORTEGA RF, et al. Expression profiles of the Wnt/β-catenin signaling-related extracellular antagonists during proliferation and differentiation in human osteoblast-like cells. Exp Ther Med. 2020;20(6):254.
[34] KRSTIĆ J, MOJSILOVIĆ S, MOJSILOVIĆ SS, et al. Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation. World J Stem Cells. 2021;13(11):1696-1713.
[35] BHADRICHA H, PATEL V, SINGH AK, et al. Increased frequency of Th17 cells and IL-17 levels are associated with low bone mineral density in postmenopausal women. Sci Rep. 2021;11(1):16155.
[36] LU L, LIU Y, NAZIERHAN S, et al. Expression changes of IL-17 in zoledronic acid combined with PVP technology in the treatment of postmenopausal osteoporotic vertebral compression fracture and its predictive value of relapse. J Musculoskelet Neuronal Interact. 2020;20(4):563-569.
[37] PENG R, DONG Y, ZHENG M, et al. IL-17 promotes osteoclast-induced bone loss by regulating glutamine-dependent energy metabolism. Cell Death Dis. 2024;15(2):111.
[38] PUN S, FLORIO CL, WRONSKI TJ. Anabolic effects of basic fibroblast growth factor in the tibial diaphysis of ovariectomized rats. Bone. 2000;27(2):197-202.
[39] YAO W, HADI T, JIANG Y, et al. Basic fibroblast growth factor improves trabecular bone connectivity and bone strength in the lumbar vertebral body of osteopenic rats. Osteoporos Int. 2005;16(12):1939-1947.
[40] ZHOU S, ZILBERMAN Y, WASSERMANN K, et al. Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem Suppl. 2001;Suppl 36:144-155.
[41] KAYGUSUZ MA, TURAN CC, AYDIN NE, et al. The effects of G-CSF and naproxen sodium on the serum TGF-beta1 level and fracture healing in rat tibias. Life Sci. 2006;80(1):67-73.
[42] SOSHI S, TAKAHASHI HE, TANIZAWA T, et al. Effect of recombinant human granulocyte colony-stimulating factor (rh G-CSF) on rat bone: inhibition of bone formation at the endosteal surface of vertebra and tibia. Calcif Tissue Int. 1996;58(5):337-340.
[43] ROSEREN F, PITHIOUX M, ROBERT S, et al. Systemic Administration of G-CSF Accelerates Bone Regeneration and Modulates Mobilization of Progenitor Cells in a Rat Model of Distraction Osteogenesis. Int J Mol Sci. 2021;22(7):3505.