[1] CHEN X, TANG H, LIN J, et al. Temporal trends in the disease burden of osteoarthritis from 1990 to 2019, and projections until 2030. PLoS One. 2023;18(7):e0288561.
[2] XIA B, DI CHEN, ZHANG J, et al. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int. 2014;95(6):495-505.
[3] LUBBERS R, VAN SCHAARENBURG RA, KWEKKEBOOM JC, et al. Complement component C1q is produced by isolated articular chondrocytes. Osteoarthritis Cartilage. 2020;28(5):675-684.
[4] SCANZELLO CR, GOLDRING SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51(2):249-257.
[5] 杨小瑞,曹林忠,胡康一,等.细胞焦亡在骨代谢异常疾病中的研究[J].中国骨质疏松杂志,2024,30(1):124-128.
[6] LOVELESS R, BLOOMQUIST R, TENG Y. Pyroptosis at the forefront of anticancer immunity. J Exp Clin Canc Res. 2021;40(1):264.
[7] 陈翔,汪萍萍.透骨消痛胶囊抑制大鼠骨性关节炎作用研究[J].药物评价研究,2020,43(1):61-65.
[8] ZYCHLINSKY A, PREVOST MC, SANSONETTI PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167-169.
[9] COOKSON BT, BRENNAN MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113-114.
[10] SHI J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575): 660-675.
[11] GALLUZZI L, VITALE I, AARONSON SA, et al. Molecular mechanisms of cell death:recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486-541.
[12] RUSSO AJ, BEHL B, BANERJEE I, et al. Emerging Insights into Noncanonical Inflammasome Recognition of Microbes. J Mol Biol. 2018;430(2):207-216.
[13] SWANSON KV, DENG M, TING JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19: 477-489.
[14] MAN SM, KARKI R, KANNEGANTI TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277:61-75.
[15] SHI J, ZHAO Y, WANG Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514(7521):187-192.
[16] KAYAGAKI N, WARMING S, LAMKANFI M, et al. Non canonical inflammasome activation targets caspase-11. Nature. 2011;479:117-121.
[17] PLATNICH JM, MURUVE DA. NOD-like receptors and inflammasomes: a review of their canonical and non canonical signaling pathways. Arch Biochem Biophys. 2019;670:4-14.
[18] ZHAO LR, XING RL, WANG PM, et al. NLRP1 and NLRP3 inflammasomes mediate LPS/ATP-induced pyroptosis in knee osteoarthritis. Mol Med Rep. 2018;17:5463-5469.
[19] MCALLISTER MJ, CHEMALY M, EAKIN AJ, et al. NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthr Cartil. 2018;26:612-619.
[20] 刘格格.豆腐果苷抑制NLRP3炎症小体改善大鼠骨关节炎炎症和疼痛反应[D].芜湖:皖南医学院,2023.
[21] PAN D, YIN P, LI L, et al. Holomycin, a novel NLRP3 inhibitor,attenuates cartilage degeneration and inflammation in osteoarthritis. Biochem Biophys Res Commun. 2023;657:59-68.
[22] 蔡猛,张永宁.三七总皂苷调控TLR4/NLRP3/Caspase-1信号通路对骨关节炎大鼠软骨细胞焦亡的影响[J].中医药信息,2023,40(2):11-17.
[23] 龚明,邱波.Caspase-1与骨关节炎的研究进展[J].中国医药导报, 2016,13(20):30-33.
[24] 李艳艳,冯亚平,柯金,等.NLRP3和Caspase-1在颞下颌关节骨关节炎滑膜中的表达[J].口腔颌面外科杂志,2021,31(2):81-84.
[25] XIAO Y, DING L, YIN S, et al. Relationship between the pyroptosis of fibroblast‑like synoviocytes and HMGB1 secretion in knee osteoarthritis. Mol Med Rep. 2021;23(2):97-107.
[26] CLEMENTS KM, PRICE JS, CHAMBERS MG, et al. Gene deletion of either interleukin-1beta, interleukin-1beta-converting enzyme, inducible nitric oxide synthase,or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthritis Rheum. 2003;48(12):3452-3463.
[27] 齐曼曼,王旭鹏,郑维朝,等.Caspase-1选择性抑制剂VX-765在大鼠急性肾损伤相关性肺损伤中的作用[J].临床麻醉学杂志,2021, 37(6):629-634.
[28] LI G, XIU L, LI X, et al. miR-155 inhibits chondrocyte pyroptosis in knee osteoarthritis by targeting SMAD2 and inhibiting the NLRP3/Caspase-1pathway. J Orthop Surg Res. 2022;17(1):48-59.
[29] 史纪元,姬乐,武世勋,等.淫羊藿苷通过抑制NLRP3炎性小体和Caspase-1通路减轻骨关节炎[J].世界中医药,2021,16(18): 2706-2713.
[30] AN S, HU H, LI Y, et al. Pyroptosis Plays a Role in Osteoarthritis. Aging Dis. 2020;11(5):1146-1157.
[31] 夏雪,沈霖,凌家艳,等.加味阳和汤治疗寒湿痹阻型膝骨关节炎的疗效及对炎症因子的影响[J].中国中医骨伤科杂志,2024,32(3): 55-58.
[32] 林绪超,何文.LncRNA SNHG3/miR-423-5p对IL-1β诱导的骨关节炎软骨细胞损伤的影响[J].中国细胞生物学学报,2023,45(9): 1312-1319.
[33] 刘娉娉,周珺贤,徐健华,等.血清IL-18与膝骨关节炎关节结构改变相关性研究[J].安徽医科大学学报,2023,58(11):1819-1823.
[34] WASZCZYKOWSKI M, FABIŚ-STROBIN A, BEDNARSKI I, et al. Serum and synovial fluid concentrations of interleukin-18 and interleukin-20 in patients with osteoarthritis of the knee and their correlation with other markers of inflammation and turnover of joint cartilage. Arch Med Sci. 2020;18(2):448-458.
[35] 李龙,刘君伟,王铎,等.温针灸对兔膝骨关节炎软骨组织中NLRP3、IL-1β和IL-18表达的影响[J].宁夏医科大学学报,2023,45(1): 85-91.
[36] 吴培刚,杨学栋,曹振昊,等.新型蛋白酶体抑制剂膝关腔内注射对兔骨关节炎的治疗作用及其机制[J]. 山东医药,2020,60(12):46-49.
[37] 李金磊,殷红,刘维统,等.灯盏花素对大鼠膝骨关节炎膝关节软骨的影响[J].云南中医药大学学报,2023,46(3):76-81.
[38] 邹怡,潘良,蔡素芬,等.温针灸联合塞来昔布胶囊对膝骨关节炎患者骨代谢指标和血清IL-6、IL-17、IL-18水平的影响[J].现代生物医学进展,2022,22(6):1074-1078.
[39] GUO Q, JIN Y, CHEN X, et al. NF-κB in biology and targeted therapy: new insights and translational implications.Signal Transduct Tar. 2024; 9(1):53-105.
[40] YAO Q, WU X, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Tar. 2023;8(1): 56-86.
[41] 李亦丞.基于NF-κB及OPG/RANKL/RANK信号通路探究青蒿琥酯对骨关节炎的作用及机制[D].乌鲁木齐:新疆医科大学,2020.
[42] 张锐,马继海,柴喜平,等.独活寄生汤对膝骨关节炎模型大鼠NF-κB通路关键分子表达的影响[J]. 西部中医药,2023,36(8):15-19.
[43] HU J, ZHOU J, WU J, et al. Loganin ameliorates cartilage degeneration and osteoarthritis development in an osteoarthritis mouse model through inhibition of NF-κB activity and pyroptosis in chondrocytes. J Ethnopharmacol. 2020;247:112-261.
[44] YU H, YAO S, ZHOU C, et al. Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-κB signaling. Ethnopharmacol. 2021;266:113447.
[45] LI Z, HUANG Z, BAI L. The P2X7 Receptor in Osteoarthritis. Front Cell Dev Biol. 2021;9:628330.
[46] LI Z, HUANG Z, ZHANG H, et al. P2X7 Receptor Induces Pyroptotic Inflammation and Cartilage Degradation in Osteoarthritis via NF-κB/NLRP3 Crosstalk. Oxid Med Cell Longev. 2021;2021:8868361.
[47] MO L, JIANG B, MEI T, et al. Exercise Therapy for Knee Osteoarthritis: A Systematic Review and Network Meta-analysis. Orthop J Sports Med. 2023;11(5):23259671231172773.
[48] CHEUNG C, WYMAN JF, PEDEN-MCALPINE C. Long-Term Yoga and Aerobic/Strength Exercise Adherence in Older Women with Knee Osteoarthritis: A Mixed Methods Approach. Int J Yoga Therap. 2022;32(2022): Article 4. doi: 10.17761/2022-D-20-00033.
[49] OKA Y, MURATA K, OZONE K, et al. Treadmill Exercise after Controlled Abnormal Joint Movement Inhibits Cartilage Degeneration and Synovitis. Life (Basel). 2021;11(4):303-315.
[50] SO BCL, KWOK MMY, LEE NWL, et al. Lower Limb Muscles’ Activation during Ascending and Descending a Single Step-Up Movement: Comparison between In water and On land Exercise at Different Step Cadences in Young Injury-Free Adults. Healthcare (Basel). 2023; 11(3):441.
[51] 黄晓倩.水中运动对膝关节骨性关节炎超重女性的运动效益研究[D].长春:吉林体育学院,2023.
[52] WANG X, SONG J, XIA P, et al. High intensity interval training attenuates osteoarthritis- associated hyperalgesia in rats. J Physiol Sci. 2023;73(1):8-17.
[53] TARANTINO D, THEYSMANS T, MOTTOLA R, et al. High-Intensity Training for Knee Osteoarthritis: A Narrative Review. Sports (Basel). 2023;11(4):91-112.
[54] MESSIER SP, MIHALKO SL, BEAVERS DP, et al. Effect of High-Intensity Strength Training on Knee Pain and Knee Joint Compressive Forces Among Adults With Knee Osteoarthritis: The START Randomized Clinical Trial. JAMA. 2021;325(7):646-657.
[55] BABUR MN, SIDDIQI FA, TASSADAQ N, et al. Effects of glucosamine and chondroitin sulfate supplementation in addition to resistance exercise training and manual therapy in patients with knee osteoarthritis: A randomized controlled trial. J Pak Med Assoc. 2022;72(7):1272-1277.
[56] MARRIOTT KA, HALL M, MACIUKIEWICZ JM, et al. Are the Effects of Resistance Exercise on Pain and Function in Knee and Hip Osteoarthritis Dependent on Exercise Volume, Duration and Adherence? Arthritis Care Res (Hoboken). 2024. doi:10.1002/acr.25313
[57] 卞学鹏,姬瑞方,刘蓓蓓,等.有氧运动降低胰岛素抵抗小鼠海马细胞焦亡相关蛋白及炎症因子的表达 [J].生理学报,2020,72(4): 455-462.
[58] 毛永强,周绮云,张馨月,等.姜黄素和/或有氧运动改善高脂血症大鼠心肌细胞焦亡的作用机制[J].食品工业科技,2022,43(2): 384-389.
[59] 张美.基于Caspase-1依赖的经典焦亡途径探讨运动预处理对大鼠脑缺血/再灌注损伤的脑保护作用[D].哈尔滨:黑龙江中医药大学,2023.
[60] FU P, GONG L, YANG L, et al. Weight bearing training alleviates muscle atrophy and pyroptosis of middle- aged rats. Front Endocrinol (Lausanne). 2023;14:1202686.
[61] YANG W, LIU L, WEI Y, et al. Exercise suppresses NLRP3 inflammasome activation in mice with diet-induced NASH: a plausible role of adropin. Lab Invest. 2021;101(3):369-380.
[62] JAVAID HMA, SAHAR NE, ZHUGE DL, et al. Exercise Inhibits NLRP3 Inflammasome Activation in Obese Mice via the Anti-Inflammatory Effect of Meteorin-like. Cells. 2021;10(12):3480-3493.
[63] LI XH, LIU LZ, CHEN L, et al. Aerobic exercise regulates FGF21 and NLRP3 inflammasome - mediated pyroptosis and inhibits atherosclerosis in mice. PLoS One. 2022;17(8):e0273527.
[64] BEHERA J, ISON J, VOOR MJ, et al. Exercise-Linked Skeletal Irisin Ameliorates Diabetes- Associated Osteoporosis by Inhibiting the Oxidative Damage-Dependent miR-150-FNDC5/ Pyroptosis Axis. Diabetes. 2022;71(12):2777-2792.
[65] SABER MM, MAHMOUD MM, AMIN HM, et al. Therapeutic effects of combining curcumin and swimming in osteoarthritis using a rat model. Biomed Pharmacother 2023;166:115309.
[66] LI Z, HUANG Z, ZHANG H, et al. Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2X7/AMPK/mTOR axis. Cell Death Discov. 2021;7(1):346-364.
[67] CASTROGIOVANNI P, DI ROSA M, RAVALLI S, et al. Moderate Physical Activity as a Prevention Method for Knee Osteoarthritis and the Role of Synoviocytes as Biological Key. Int J Mol Sci. 2019;20(3):511-528.
[68] SHEN P, JIA S, WANG Y, Et al. Mechanical stress protects against chondrocyte pyroptosis through lipoxin A4 via synovial macrophage M2 subtype polarization in an osteoarthritis model. Biomed Pharmacother. 2022;153:113361.
[69] WANG Y, JIN Z, JIA S, et al. Mechanical stress protects against chondrocyte pyroptosis through TGF-β1-mediated activation of Smad2/3 and inhibition of the NF-κB signaling pathway in an osteoarthritis model. Biomed Pharmacother. 2023;159:114216.
[70] LIU J, JIA S, YANG Y, et al. Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF-κB and NLRP3/caspase-1/GSDMD signaling. Biomed Pharmacother. 2023;158:114118.
[71] JIA S, YANG Y, BAI Y, et al. Mechanical Stimulation Protects Against Chondrocyte Pyroptosis Through Irisin- Induced Suppression of PI3K/Akt/NF -κB Signal Pathway in Osteoarthritis. Front Cell Dev Biol. 2022;10:797855.
|