[1] DEVARBHAVI H, ASRANI SK, ARAB JP, et al. Global burden of liver disease: 2023 update. J Hepatol. 2023;79(2):516-537.
[2] IANSANTE V, MITRY RR, FILIPPI C, et al. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res. 2018;83(1-2):232-240.
[3] LIU J, YUAN Z, WANG Q. Pluripotent Stem Cell-derived Strategies to Treat Acute Liver Failure: Current Status and Future Directions. J Clin Transl Hepatol. 2022;10(4):692-699.
[4] MAN S, DENG Y, MA Y, et al. Prevalence of Liver Steatosis and Fibrosis in the General Population and Various High-Risk Populations: A Nationwide Study With 5.7 Million Adults in China. Gastroenterology. 2023;165(4):1025-1040.
[5] YIP TC, FAN JG, WONG VW. China’s Fatty Liver Crisis: A Looming Public Health Emergency. Gastroenterology. 2023;165(4):825-827.
[6] LI Y, LU L, CAI X. Liver Regeneration and Cell Transplantation for End-Stage Liver Disease. Biomolecules. 2021;11(12):1907.
[7] ZHANG S, YANG Y, FAN L, et al. The clinical application of mesenchymal stem cells in liver disease: the current situation and potential future. Ann Transl Med. 2020;8(8):565.
[8] JIN Y, SHI R, QI T, et al. Adipose-derived stem cells show hepatic differentiation potential and therapeutic effect in rats with acute liver failure. Acta Biochim Biophys Sin. 2023;55(4):601-612.
[9] YU H, FENG Y, DU W, et al. Off-the-shelf GMP-grade UC-MSCs as therapeutic drugs for the amelioration of CCl4-induced acute-on-chronic liver failure in NOD-SCID mice. Int Immunopharmacol. 2022; 113(Pt A):109408.
[10] SCHACHER FC, MARTINS PEZZI DA SILVA A, SILLA L, et al. Bone Marrow Mesenchymal Stem Cells in Acute-on-Chronic Liver Failure Grades 2 and 3: A Phase I-II Randomized Clinical Trial. Can J Gastroenterol Hepatol. 2021;2021:3662776.
[11] ANDERSON TN, ZARRINPAR A. Hepatocyte transplantation: past efforts, current technology, and future expansion of therapeutic potential. J Surg Res. 2018;226:48-55.
[12] FINKBEINER SR, FREEMAN JJ, WIECK MM, et al. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol Open. 2015;4(11):1462-1472.
[13] 徐灿丽,何文星,汪磊,等. 肝脏类器官研究的文献计量学分析[J].中国组织工程研究,2024,28(7):1099-1104.
[14] OGAWA M, OGAWA S, BEAR CE, et al. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol. 2015;33(8):853-861.
[15] SUN L, WANG Y, CEN J, et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat Cell Biol. 2019;21(8):1015-1026.
[16] SAMPAZIOTIS F, DE BRITO M C, MADRIGAL P, et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol. 2015;33(8):845-852.
[17] WU F, WU D, REN Y, et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatology. 2019;70(6): 1145-1158.
[18] TAKEBE T, SEKINE K, ENOMURA M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013; 499(7459):481-484.
[19] TEN DAM MJM, FREDERIX GWJ, TEN HAM RMT, et al. Toward Transplantation of Liver Organoids: From Biology and Ethics to Cost-effective Therapy. Transplantation. 2023;107(8):1706-1717.
[20] YUAN Y, COTTON K, SAMARASEKERA D, et al. Engineered Platforms for Maturing Pluripotent Stem Cell-Derived Liver Cells for Disease Modeling. Cell Mol Gastroenterol Hepatology. 2023;15(5):1147-1160.
[21] BAI Y, YANG Z, XU X, et al. Direct chemical induction of hepatocyte-like cells with capacity for liver repopulation. Hepatology. 2023;77(5): 1550-1565.
22] GANDHI N, WILLS L, AKERS K, et al. Comparative transcriptomic and phenotypic analysis of induced pluripotent stem cell hepatocyte-like cells and primary human hepatocytes. Cell Tissue Res. 2024;396(1): 119-139.
[23] PRIOR N, INACIO P, HUCH M. Liver organoids: from basic research to therapeutic applications. Gut. 2019;68(12):2228-2237.
[24] LANDRY J, BERNIER D, OUELLET C, et al. Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J Cell Biol. 1985;101(3):914-923.
[25] MIKOS AG, SARAKINOS G, LYMAN MD, et al. Prevascularization of porous biodegradable polymers. Biotechnol Bioeng. 1993;42(6): 716-723.
[26] TAKEZAWA T, YAMAZAKI M, MORI Y, et al. Morphological and immuno-cytochemical characterization of a hetero-spheroid composed of fibroblasts and hepatocytes. J Cell Sci. 1992;101(Pt3):495-501.
[27] DIXIT V, PISKIN E, ARTHUR M, et al. Hepatocyte immobilization on PHEMA microcarriers and its biologically modified forms. Cell Transplant. 1992;1(6):391-399.
[28] MATSUURA T. Bioreactors for 3-dimensional high-density culture of human cells. Hum Cell. 2006;19(1):11-16.
[29] YAN Y, WANG X, PAN Y, et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials. 2005;26(29): 5864-5871.
[30] BAPTISTA PM, SIDDIQUI MM, LOZIER G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53(2):604-617.
[31] BROUTIER L, ANDERSSON-ROLF A, HINDLEY CJ, et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc. 2016;11(9):1724-1743.
[32] HUCH M, GEHART H, VAN BOXTEL R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015; 160(1-2):299-312.
[33] DE CRIGNIS E, HOSSAIN T, ROMAL S, et al. Application of human liver organoids as a patient-derived primary model for HBV infection and related hepatocellular carcinoma. Elife. 2021;10:e60747
[34] ZHU X, ZHANG B, HE Y, et al. Liver Organoids: Formation Strategies and Biomedical Applications. Tissue Eng Regen Med. 2021;18(4):573-585.
[35] MICHALOPOULOS GK, BOWEN WC, MULÈ K, et al. Histological organization in hepatocyte organoid cultures. Am J Pathol. 2001;159(5): 1877-1887.
[36] PENG WC, LOGAN CY, FISH M, et al. Inflammatory Cytokine TNFα Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture. Cell. 2018;175(6):1607-1619.e15.
[37] HU H, GEHART H, ARTEGIANI B, et al. Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. Cell. 2018;175(6):1591-1606.e19.
[38] NUCIFORO S, HEIM MH. Organoids to model liver disease. JHEP Rep. 2021;3(1):100198.
[39] YAMANAKA S. Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell. 2020;27(4):523-531.
[40] GUO J, DUAN L, HE X, et al. A Combined Model of Human iPSC-Derived Liver Organoids and Hepatocytes Reveals Ferroptosis in DGUOK Mutant mtDNA Depletion Syndrome. Adv Sci(Weinh). 2021;8(10): 2004680.
[41] MUN SJ, RYU JS, LEE MO, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol. 2019;71(5):970-985.
[42] SHINOZAWA T, KIMURA M, CAI Y, et al. High-Fidelity Drug-Induced Liver Injury Screen Using Human Pluripotent Stem Cell-Derived Organoids. Gastroenterology. 2021;160(3):831-846.e10.
[43] LI Y, YANG X, PLUMMER R, et al. Human Pluripotent Stem Cell-Derived Hepatocyte-Like Cells and Organoids for Liver Disease and Therapy. Int J Mol Sci. 2021;22(19):10471
[44] WANG S, WANG X, TAN Z, et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res. 2019;29(12):1009-1026.
[45] ZENG F, ZHANG Y, HAN X, et al. Liver Buds and Liver Organoids: New Tools for Liver Development, Disease and Medical Application. Stem Cell Rev Rep. 2019;15(6):774-784.
[46] SOROKA CJ, ASSIS DN, ALRABADI LS, et al. Bile-Derived Organoids From Patients With Primary Sclerosing Cholangitis Recapitulate Their Inflammatory Immune Profile. Hepatology. 2019;70(3):871-882.
[47] OUCHI R, TOGO S, KIMURA M, et al. Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids. Cell Metab. 2019;30(2):374-384.e6.
[48] VERSTEGEN MMA, ROOS FJM, BURKA K, et al. Human extrahepatic and intrahepatic cholangiocyte organoids show region-specific differentiation potential and model cystic fibrosis-related bile duct disease. Sci Rep. 2020;10(1):21900.
[49] HENDRIKS D, BROUWERS JF, HAMER K, et al. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat Biotechnol. 2023;41(11):1567-1581.
[50] SCANU T, SPAAPEN RM, BAKKER JM, et al. Salmonella Manipulation of Host Signaling Pathways Provokes Cellular Transformation Associated with Gallbladder Carcinoma. Cell Host Microbe. 2015;17(6):763-774.
[51] GUAN Y, ENEJDER A, WANG M, et al. A human multi-lineage hepatic organoid model for liver fibrosis. Nat Commun. 2021;12(1):6138.
[52] MAIER CF, ZHU L, NANDURI LK, et al. Patient-Derived Organoids of Cholangiocarcinoma. Intl J Molecular Sci. 2021;22(16):8675.
[53] YUAN B, ZHAO X, WANG X, et al. Patient-derived organoids for personalized gallbladder cancer modelling and drug screening. Clin Transl Med. 2022;12(1):e678.
[54] SAITO Y, MURAMATSU T, KANAI Y, et al. Establishment of Patient-Derived Organoids and Drug Screening for Biliary Tract Carcinoma. Cell Rep. 2019;27(4):1265-1276.e4.
[55] RAMLI MNB, LIM YS, KOE CT, et al. Human Pluripotent Stem Cell-Derived Organoids as Models of Liver Disease. Gastroenterology. 2020; 159(4):1471-1486.e12.
[56] LOARCA L, DE ASSUNCAO TM, JALAN-SAKRIKAR N, et al. Development and characterization of cholangioids from normal and diseased human cholangiocytes as an in vitro model to study primary sclerosing cholangitis. Lab Invest. 2017;97(11):1385-1396.
[57] CHOI YJ, KIM MS, RHOADES JH, et al. Patient-Induced Pluripotent Stem Cell-Derived Hepatostellate Organoids Establish a Basis for Liver Pathologies in Telomeropathies. Cell Mol Gastroenterol Hepatol. 2023; 16(3):451-472.
[58] GÓMEZ-MARIANO G, MATAMALA N, MARTíNEZ S, et al. Liver organoids reproduce alpha-1 antitrypsin deficiency-related liver disease. Hepatol Int. 2020;14(1):127-137.
[59] CHEN S, LI P, WANG Y, et al. Rotavirus Infection and Cytopathogenesis in Human Biliary Organoids Potentially Recapitulate Biliary Atresia Development. mBio. 2020;11(4):e01968-20.
[60] LI J, CHU J, LUI VCH, et al. Bioengineering Liver Organoids for Diseases Modelling and Transplantation. Bioengineering (Basel). 2022;9(12): 796.
[61] HUCH M, DORRELL C, BOJ SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013; 494(7436):247-250.
[62] LI Y, WU Q, WANG Y, et al. Novel spheroid reservoir bioartificial liver improves survival of nonhuman primates in a toxin-induced model of acute liver failure. Theranostics. 2018;8(20):5562-574.
[63] NIE YZ, ZHENG YW, OGAWA M, et al. Human liver organoids generated with single donor-derived multiple cells rescue mice from acute liver failure. Stem Cell Res Ther. 2018;9(1):5.
[64] TSUCHIDA T, MURATA S, MATSUKI K, et al. The Regenerative Effect of Portal Vein Injection of Liver Organoids by Retrorsine/Partial Hepatectomy in Rats. Int J Mol Sci. 2019;21(1):178.
[65] PETTINATO G, LEHOUX S, RAMANATHAN R, et al. Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with Endothelial Cells. Sci Rep. 2019;9(1):8920.
[66] LI J, XING F, CHEN F, et al. Functional 3D Human Liver Bud Assembled from MSC-Derived Multiple Liver Cell Lineages. Cell Transplant. 2019; 28(5):510-521.
[67] KRUITWAGEN HS, OOSTERHOFF LA, VAN WOLFEREN ME, et al. Long-Term Survival of Transplanted Autologous Canine Liver Organoids in a COMMD1-Deficient Dog Model of Metabolic Liver Disease. Cells. 2020; 9(2):410.
[68] SAMPAZIOTIS F, MURARO D, TYSOE OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science. 2021;371(6531):839-846.
[69] YANG H, SUN L, PANG Y, et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021; 70(3):567-574.
[70] NAM D, PARK MR, LEE H, et al. Induced Endothelial Cell-Integrated Liver Assembloids Promote Hepatic Maturation and Therapeutic Effect on Cholestatic Liver Fibrosis. Cells. 2022;11(14):2242.
[71] YUAN X, WU J, SUN Z, et al. Preclinical efficacy and safety of encapsulated proliferating human hepatocyte organoids in treating liver failure. Cell Stem Cell. 2024;31(4):484-498.e5.
[72] FIOROTTO R, AMENDUNI M, MARIOTTI V, et al. Liver diseases in the dish: iPSC and organoids as a new approach to modeling liver diseases. Biochim Biophysica Acta Mol Basis Dis. 2019;1865(5):920-928.
[73] WILLEMSE J, VAN TIENDEREN G, VAN HENGEL E, et al. Hydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids. Biomaterials. 2022;284: 121473.
[74] KIM D H, KIM M J, KWAK S Y, et al. Bioengineered liver crosslinked with nano-graphene oxide enables efficient liver regeneration via MMP suppression and immunomodulation. Nat Commun. 2023;14(1):801.
[75] TAMAI M, ADACHI E, KAWASE M, et al. Syngeneic implantation of mouse hepatic progenitor cell-derived three-dimensional liver tissue with dense collagen fibrils. World J Gastroenterol. 2022;28(14): 1444-1454.
[76] MATSUMOTO K, YOSHITOMI H, ROSSANT J, et al. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 2001;294(5542):559-563.
[77] YOON Y, GONG SC, KIM MY, et al. Generation of Fibrotic Liver Organoids Using Hepatocytes, Primary Liver Sinusoidal Endothelial Cells, Hepatic Stellate Cells, and Macrophages. Cells. 2023;12(21):2514.
[78] RENNERT K, STEINBORN S, GRöGER M, et al. A microfluidically perfused three dimensional human liver model. Biomaterials. 2015;71:119-131.
[79] BONANINI F, KUREK D, PREVIDI S, et al. In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed. Angiogenesis. 2022;25(4):455-470.
[80] SKARDAL A, ALEMAN J, FORSYTHE S, et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication. 2020;12(2):025017.
[81] RAJAN SAP, ALEMAN J, WAN M, et al. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomater. 2020;106:124-135.
[82] NGUYEN VVT, YE S, GKOUZIOTI V, et al. A human kidney and liver organoid-based multi-organ-on-a-chip model to study the therapeutic effects and biodistribution of mesenchymal stromal cell-derived extracellular vesicles. J Extracell Vesicles. 2022;11(11):e12280.
[83] AKBARI S, ARSLAN N, SENTURK S, et al. Next-Generation Liver Medicine Using Organoid Models. Front Cell Dev Biol. 2019;7:345.
[84] LIANG J, WEI J, CAO J, et al. In-organoid single-cell CRISPR screening reveals determinants of hepatocyte differentiation and maturation. Genome Biol. 2023;24(1):251.
[85] LAM YK, YU J, HUANG H, et al. TP53 R249S mutation in hepatic organoids captures the predisposing cancer risk. Hepatology. 2023;78(3):727-740.
[86] RAMAKRISHNA G, BABU PE, SINGH R, et al. Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids. Hepatol Int. 2021;15(6):1309-1317.
[87] ZHU S, REZVANI M, HARBELL J, et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 2014;508(7494):93-97.
[88] ZAHMATKESH E, KHOSHDEL RAD N, HOSSEIN-KHANNAZER N, et al. Cell and cell-derivative-based therapy for liver diseases: current approaches and future promises. Expert Rev Gastroenterol Hepatol. 2023;17(3): 237-249.
[89] JIANG S, XU F, JIN M, et al. Development of a high-throughput micropatterned agarose scaffold for consistent and reproducible hPSC-derived liver organoids. Biofabrication. 2022;15(1). doi: 10.1088/1758-5090/ac933c.
[90] YAP KK, GERRAND YW, DINGLE AM, et al. Liver sinusoidal endothelial cells promote the differentiation and survival of mouse vascularised hepatobiliary organoids. Biomaterials. 2020;251:120091.
[91] KIM HJ, KIM G, CHI KY, et al. Generation of multilineage liver organoids with luminal vasculature and bile ducts from human pluripotent stem cells via modulation of Notch signaling. Stem Cell Res Ther. 2023;14(1): 19.
[92] 刘明昱, 范文娟. 血管化类器官的构建策略[J].中国组织工程研究,2025. https://doi.org/10.12307/2025.052
[93] VELAZQUEZ JJ, LEGRAW R, MOGHADAM F, et al. Gene Regulatory Network Analysis and Engineering Directs Development and Vascularization of Multilineage Human Liver Organoids. Cell Syst. 2021; 12(1):41-55.e11.
[94] CROCE S, PELOSO A, ZORO T, et al. A Hepatic Scaffold from Decellularized Liver Tissue: Food for Thought. Biomolecules. 2019; 9(12):813.
|