[1] LEBOFF MS, GREENSPAN SL, INSOGNA KL, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049-2102.
[2] BROWN JP. Long-term treatment of postmenopausal osteoporosis. Endocrinol Metab (Seoul). 2021;36(3):544-552.
[3] 武瑞骐,周毅,夏天,等.类风湿性关节炎与骨质疏松症和骨密度关系的孟德尔随机化分析[J].中国组织工程研究,2024,28(23): 3715-3721.
[4] YONG EL, LOGAN S. Menopausal osteoporosis: screening, prevention and treatment. Singapore Med J. 2021;62(4):159-166.
[5] LI S, CHEN B, CHEN H, et al. Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning. PLoS One. 2021;16(9): e0257343.
[6] AIBAR-ALMAZAN A, VOLTES-MARTINEZ A, CASTELLOTE-CABALLERO Y, et al. Current status of the diagnosis and management of osteoporosis. Int J Mol Sci. 2022;23(16):9465.
[7] HU Y, HAN J, DING S, et al. Identification of ferroptosis-associated biomarkers for the potential diagnosis and treatment of postmenopausal osteoporosis. Front Endocrinol (Lausanne). 2022;13:986384.
[8] DEMPSTER DW, SHANE E, HORBERT W, et al. A simple method for correlative light and scanning electron microscopy of human iliac crest bone biopsies: qualitative observations in normal and osteoporotic subjects. J Bone Miner Res. 1986;1(1):15-21.
[9] RIGGS BL, KHOSLA S, ATKINSON EJ, et al. Evidence that type I osteoporosis results from enhanced responsiveness of bone to estrogen deficiency. Osteoporos Int. 2003;14(9):728-733.
[10] SRIVASTAVA M, DEAL C. Osteoporosis in elderly: prevention and treatment. Clin Geriatr Med. 2002;18(3):529-555.
[11] LI Y, SI Y, MA Y, et al. Application and prospect of metabolomics in the early diagnosis of osteoporosis: a narrative review. Bioanalysis. 2023;15(22):1369-79.
[12] PRESTWOOD KM, PILBEAM CC, RAISZ LG. Treatment of osteoporosis. Annu Rev Med. 1995;46:249-256.
[13] CHEUNG AM, GIANGREGORIO L. Mechanical stimuli and bone health: what is the evidence?. Curr Opin Rheumatol. 2012;24(5):561-566.
[14] WANG CG, HU YH, SU SL, et al. LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/beta-catenin signaling pathway. Exp Mol Med. 2020;52(8):1310-1325.
[15] YOSHIDA G, KAWABATA T, TAKAMATSU H, et al. Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis. Autophagy. 2022;18(10):2323-2332.
[16] HUANG H, HE YM, LIN MM, et al. P2X7Rs: new therapeutic targets for osteoporosis. Purinergic Signal. 2023;19(1):207-219.
[17] AYERS C, KANSAGARA D, LAZUR B, et al. Effectiveness and safety of treatments to prevent fractures in people with low bone mass or primary osteoporosis: a living systematic review and network meta-analysis for the american college of physicians. Ann Intern Med. 2023;176(2):182-195.
[18] KIM W K, MELITON V, BOURQUARD N, et al. Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress. J Cell Biochem. 2010;111(5):1199-1209.
[19] H DEHKORD IM, TASHAKOR A, O’CONNELL E, et al. Apoptosome-dependent myotube formation involves activation of caspase-3 in differentiating myoblasts. Cell Death Dis. 2020;11(5):308.
[20] LI F, SUN X, MA J, et al. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway. Biochem Biophys Res Commun. 2014;452(3):629-635.
[21] ZHANG C, LI H, LI J, et al. Oxidative stress: a common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother. 2023;163:114834.
[22] SANCHEZ-RODRIGUEZ MA, RUIZ-RAMOS M, CORREA-MUNOZ E, et al. Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord. 2007;8:124.
[23] LIU Y, WANG C, WANG G, et al. Loureirin B suppresses RANKL-induced osteoclastogenesis and ovariectomized osteoporosis via attenuating NFATc1 and ROS activities. Theranostics. 2019;9(16):4648-4662.
[24] LI H, HUANG C, ZHU J, et al. Lutein suppresses oxidative stress and inflammation by nrf2 activation in an osteoporosis rat model. Med Sci Monit. 2018;24:5071-5075.
[25] RAUWEL B, DEGBOE Y, DIALLO K, et al. Inhibition of osteoclastogenesis by the RNA-binding protein QKI5: a novel approach to protect from bone resorption. J Bone Miner Res. 2020;35(4):753-765.
[26] CHANDRA A, LAGNADO AB, FARR JN, et al. Targeted reduction of senescent cell burden alleviates focal radiotherapy-related bone loss. J Bone Miner Res. 2020;35(6):1119-1131.
[27] FARR JN, XU M, WEIVODA MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072-10729.
[28] GUAN JL, SIMON AK, PRESCOTT M, et al. Autophagy in stem cells. Autophagy. 2013;9(6): 830-849.
[29] LI H, LI D, MA Z, et al. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy. 2018;14(10):1726-1741.
[30] YIN X, ZHOU C, LI J, et al. Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res. 2019;7:28.
[31] SHAPIRO IM, LAYFIELD R, LOTZ M, et al. Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy. 2014;10(1):7-19.
[32] ZHU C, SHEN S, ZHANG S, et al. Autophagy in bone remodeling: a regulator of oxidative stress. Front Endocrinol (Lausanne). 2022;13: 898634.
[33] WU M, ZHANG P. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Lett. 2020;469:207-216.
[34] LIANG C, XU J, MENG Q, et al. TGFB1-induced autophagy affects the pattern of pancreatic cancer progression in distinct ways depending on SMAD4 status. Autophagy. 2020;16(3):486-500.
[35] XIAO S, LIU N, YANG X, et al. Polygalacin D suppresses esophageal squamous cell carcinoma growth and metastasis through regulating miR-142-5p/Nrf2 axis. Free Radic Biol Med. 2021;164:58-75.
[36] RUBY M, GIFFORD CC, PANDEY R, et al. Autophagy as a therapeutic target for chronic kidney disease and the roles of TGF-beta1 in autophagy and kidney fibrosis. Cells. 2023. doi:10.3390/cells12030412.
[37] TIAN L, XIAO H, LI M, et al. A novel Sprouty4-ERK1/2-Wnt/beta-catenin regulatory loop in marrow stromal progenitor cells controls osteogenic and adipogenic differentiation. Metabolism. 2020;105:154189.
[38] LIU F, SONG C, CAI W, et al. Shared mechanisms and crosstalk of COVID-19 and osteoporosis via vitamin D. Sci Rep. 2022;12(1):18147.
[39] LINDER M, HECKING M, GLITZNER E, et al. EGFR controls bone development by negatively regulating mTOR-signaling during osteoblast differentiation. Cell Death Differ. 2018;25(6):1094-106.
[40] ROBLING AG, BONEWALD LF. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485-506.
[41] YUE J, LOPEZ J M. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7):2346.
[42] TANG L, WU M, LU S, et al. Fgf9 Negatively regulates bone mass by inhibiting osteogenesis and promoting osteoclastogenesis Via MAPK and PI3K/AKT signaling. J Bone Miner Res. 2021;36(4):779-791.
[43] 覃浩,亢腾,刘钢.长链非编码RNA通过p38MAPK信号通路直接或间接影响骨质疏松症[J].中国组织工程研究,2025,29(1):175-184.
[44] LIU Q, XU YC, SHUAI ZW. Mir-142-3P regulates MAPK protein family by inhibiting 14-3-3η to enhance bone marrow mesenchymal stem cells osteogenesis. Sci Rep. 2023;13(1):22862.
[45] TAKAHARA T, TSUYUKI T, SATOU A, et al. TGFB1 mRNA expression is associated with poor prognosis and specific features of inflammation in ccRCC. Virchows Arch. 2022;480(3):635-643.
[46] WANG YW, LIN WY, WU FJ, et al. Unveiling the transcriptomic landscape and the potential antagonist feedback mechanisms of TGF-beta superfamily signaling module in bone and osteoporosis. Cell Commun Signal. 2022; 20(1):190.
[47] SASAKI N, ITAKURA Y, MOHSIN S, et al. Cell surface and functional features of cortical bone stem cells. Int J Mol Sci. 2021;22(21):11849.
[48] TAKEUCHI Y, NAKAYAMA K, MATSUMOTO T. Differentiation and cell surface expression of transforming growth factor-beta receptors are regulated by interaction with matrix collagen in murine osteoblastic cells. J Biol Chem. 1996; 271(7):3938-3944.
[49] KNUDSEN ES, PRUITT SC, HERSHBERGER PA, et al. Cell cycle and beyond: exploiting new RB1 controlled mechanisms for cancer therapy. Trends Cancer. 2019;5(5):308-324.
[50] THOMAS DM, CARTY SA, PISCOPO DM, et al. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell. 2001;8(2):303-216.
[51] CALO E, QUINTERO-ESTADES JA, DANIELIAN PS, et al. Rb regulates fate choice and lineage commitment in vivo. Nature. 2010; 466(7310):1110-1114.
[52] HANAU S, HELLIWELL JR. 6-Phosphogluconate dehydrogenase and its crystal structures. Acta Crystallogr F Struct Biol Commun. 2022; 78(Pt 3):96-112. |