[1] 杨帮成,周学东,于海洋,等.钛种植体表面改性方法[J].华西口腔医学杂志,2019,37(2):124-129.
[2] KLINEBERG I, MURRAY G. Osseoperception: sensory function and proprioception. Adv Dent Res. 1999;13:120-9.11276734.
[3] KARAPOLAT I, KARAPOLAT HU, KIRAZLI Y, et al. Longitudinal study of bone loss in chronic spinal cord injury patients. J Phys Ther Sci. 2015;27:1429-1433.
[4] 赵文迪,刘晓秋.氧化石墨烯在钛植入物表面改性应用中的研究进展[J].口腔医学研究,2020,36(11):1000-1003.
[5] SENNA PM, DE ALMEIDA BARROS MOURÃO CF, MELLO-MACHADO RC,
et al. Silane-Coating Strategy for Titanium Functionalization Does Not Impair Osteogenesis In Vivo. Materials (Basel). 2021;14(7):1814.
[6] SHARAN J, KOUL V, DINDA AK, et al. Bio-functionalization of grade V titanium alloy with type I human collagen for enhancing and promoting human periodontal fibroblast cell adhesion - an in-vitro study. Colloids Surf B Biointerfaces. 2018; 161:1-9.
[7] QIAN WH, QIU JJ, LIU XY. Minocycline hydrochloride-loaded graphene oxide films on implant abutments for peri-implantitis treatment in beagle dogs. J Periodontol. 2020;91:792-799.
[8] LI QF, WANG ZL. Involvement of FAK/P38 Signaling Pathways in Mediating the Enhanced Osteogenesis Induced by Nano-Graphene Oxide Modification on Titanium Implant Surface. Int J Nanomedicine. 2020;15:4659-4676.
[9] KANG MS, JEONG SJ, LEE SH, et al. Reduced graphene oxide coating enhances osteogenic differentiation of human mesenchymal stem cells on Ti surfaces. Biomater Res. 2021;25(1):1-9.
[10] JANG W, KIM HS, ALAM K, et al. Direct-Deposited Graphene Oxide on Dental Implants for Antimicrobial Activities and Osteogenesis. Int J Nanomedicine. 2021; 16:5745-5754.
[11] ŁAWKOWSKA K, POKRYWCZYŃSKA M, KOPER K, et al. Application of Graphene in Tissue Engineering of the Nervous System. Int J Mol Sci. 2021;23(1):33.
[12] ZHAO Y, WANG Y, NIU C, et al. Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth. J Biomed Mater Res A. 2018;106:1951-1964.
[13] CHEN S, ZHAO Y, YAN X, et al. PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury. J Biomed Mater Res A. 2019;107(6):1273-1283.
[14] TAN G, ZHANG L, NING C, et al. Preparation and characterization of APTES films on modification titanium by SAMs. Thin solid films. 2011;519(15):4997-5001.
[15] 王楠.不同还原程度的还原型氧化石墨烯体外促成骨研究[D].长春:吉林大学,2020.
[16] BORAH R, INGAVLE GC, KUMAR A, et al. Surface-Functionalized Conducting Nanofibers for Electrically Stimulated Neural Cell Function. Biomacromolecules. 2021;22:594-611.
[17] 王艳颖,宫苹,张健.不同种植体表面性质对雪旺细胞生物学行为影响的研究[J].华西口腔医学杂志,2021,39(3):279-285.
[18] LLEWELLYN SH, FARONI A, ILIUT M, et al. Graphene Oxide Substrate Promotes Neurotrophic Factor Secretion and Survival of Human Schwann-Like Adipose Mesenchymal Stromal Cells. Adv Biol (Weinh). 2021;5(4):e2000271.
[19] ZHANG K, ZHENG H, LIANG S, et al. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater. 2016;37: 131-142.
[20] 冯曦,王佐林.钛表面氧化石墨烯涂层对施旺氏细胞黏附与增殖的影响[J].口腔颌面外科杂志,2019,29(2):61-68.
[21] 孟帅岑,赵静辉,张天首,等.牙种植体周围神经再生的研究进展[J].吉林大学学报(医学版),2017,43(2):459-462.
[22] YUAN Q, LIAO DP, YANG XM, et al. Effect of implant surface microtopography on proliferation, neurotrophin secretion, and gene expression of Schwann cells. J Biomed Mater Res A. 2010;93:381-288.
[23] ZHAO JH, GUO Y, LAN A, et al. The effect of amino plasma-enhanced chemical vapor deposition-treated titanium surface on Schwann cells. J Biomed Mater Res A. 2018;106:265-271.
[24] LAN A, XU W, ZHAO J, et al. Surface functionalization of TiO nanotubes with minocycline and its in vitro biological effects on Schwann cells. Biomed Eng Online. 2018;17:88.
[25] 程景阳.载锂二氧化钛纳米复合涂层对大鼠施万细胞生物学性能的影响[D].兰州:兰州大学,2021.
[26] ZHENG D, NEOH KG, SHI Z, et al. Assessment of stability of surface anchors for antibacterial coatings and immobilized growth factors on titanium. J Colloid Interface Sci. 2013;406:238-246.
[27] OU JF, WANG JQ, LIU S, et al. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir. 2010;26:15830-15836.
[28] FELGUEIRAS HP, EVANS MDM, MIGONNEY V. Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V. Acta Biomater. 2015;28:225-233.
[29] GRIJALVO S, DÍAZ DD. Graphene-based hybrid materials as promising scaffolds for peripheral nerve regeneration. Neurochem Int. 2021;147:105005.
[30] SHAH S, YIN PT, UEHARA TM, et al. Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater. 2014;26: 3673-3680.
[31] QIAN Y ,SONG J, ZHAO X, et al. 3D Fabrication with Integration Molding of a Graphene Oxide/Polycaprolactone Nanoscaffold for Neurite Regeneration and Angiogenesis. Adv Sci (Weinh). 2018;5:1700499.
[32] RICCI A, CATALDI A, ZARA S, et al. Graphene-Oxide-Enriched Biomaterials: A Focus on Osteo and Chondroinductive Properties and Immunomodulation. Materials (Basel). 2022;15(6):2229.
[33] 姚汝瞻,王炳武,王光林.石墨烯及其衍生物修复周围神经缺损的研究进展[J].中国修复重建外科杂志,2018,32(11):1483-1487.
[34] GARDIN C, PIATTELLI A, ZAVAN B. Graphene in Regenerative Medicine: Focus on Stem Cells and Neuronal Differentiation. Trends Biotechnol. 2016;34:435-437.
[35] BARANOWSKI A, KLEIN A, RITZ U, et al. Surface functionalization of orthopedic titanium implants with bone sialoprotein. PLoS One. 2016;11(4):e0153978.
[36] MISHRA SK, TEOTIA AK, KUMAR A, et al. Mechanically tuned nanocomposite coating on titanium metal with integrated properties of biofilm inhibition, cell proliferation, and sustained drug delivery. Nanomedicine. 2017;13:23-35.
[37] 古丽巴努·依马木,徐国强,迪丽努尔·阿吉,等.硅烷偶联剂对纯钛表面改性及细胞相容性的影响[J].中国组织工程研究,2014,18(12):1864-1869.
[38] PAWLIK A, SOCHA RP, HUBALEK KALBACOVA M, et al. Surface modification of nanoporous anodic titanium dioxide layers for drug delivery systems and enhanced SAOS-2 cell response. Colloids Surf B Biointerfaces. 2018;171:58-66.
[39] TAYLOR CS, CHEN R, D’ SA R, et al. Cost effective optimised synthetic surface modification strategies for enhanced control of neuronal cell differentiation and supporting neuronal and Schwann cell viability. J Biomed Mater Res B Appl Biomater. 2021;109:1713-1723.
[40] YUAN Q, GONG P, TAN Z. Schwann cell graft: a method to promote sensory responses of osseointegrated implants. Med Hypotheses. 2007;69:800-803.
[41] YE J, HUANG B, GONG P. Nerve growth factor-chondroitin sulfate/hydroxyapatite-coating composite implant induces early osseointegration and nerve regeneration of peri-implant tissues in Beagle dogs. J Orthop Surg Res. 2021;16:51.
[42] 黄峰,项立新,徐国超.神经生长因子-明胶海绵复合体修复种植体周围骨缺损的实验研究[J].中华口腔医学杂志,2013,48(1):23-26.
|